Hostname: page-component-848d4c4894-r5zm4 Total loading time: 0 Render date: 2024-07-03T21:39:51.025Z Has data issue: false hasContentIssue false

Monzonite suites: the innermost Cordilleran plutonism of Patagonia

Published online by Cambridge University Press:  03 November 2011

C. W. Rapela
Affiliation:
Carlos W. Rapela, Centro de Investigaciones Geólogicas, Universidad de La Plata, Calle 1 No 644, 1900 La Plata, Argentina.
R. J. Pankhurst
Affiliation:
Robert J. Pankhurst, British Antarctic Survey, c/o NERC Isotope Geosciences Laboratory, Keyworth, Nottingham NG12 5GG, U.K..

Abstract:

In Patagonia a Triassic-Early Jurassic Cordilleran interior magmatic belt preceded the widespread eruption of Middle Jurassic syn-extensional rhyolites. Two plutons (La Calandria and La Leona) represent the easternmost plutonic rocks of this belt, > 750 km east of the present oceanic trench. They define a high-K calc-alkaline monzonite series in contrast with the main Andinotype arc magmatism of the Pacific margin: they are enriched in large ion lithophile elements (K, Rb, Ba, Sr and Th), LREE and P2O5 and depleted in HREE and Y, with low FeO*/MgO ratio. The range of observed compositions (56-76% SiO2) resulted from high-level fractionation of plagioclase, hornbleńde, biotite, K-feldspar and accessories (sphene, apatite and zircon).

Initial 87Sr/86Sr ratios, average εNdt and mean depleted-mantle Nd model ages of the two plutons are 0·70487, -0·5 and 1050 Ma for La Calandria and 0·70509, -1·4 and 1125 Ma for La Leona, respectively. They are thus isotopically more primitive than the Middle Jurassic rhyolites, previously attributed to partial melting of Mesoproterozoic mafic lower crust. The preferred model for the origin of the monzonites is remelting of an amphibole- + garnet-bearing, plagioclase-poor, high-K mafic source (?underplating). This occurred in a distal sector of a dying oblique subduction regime, immediately preceding the extensional silicic volcanism.

Type
Research Article
Copyright
Copyright © Royal Society of Edinburgh 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

10. References

Alabaster, T.&Storey, B. C. 1990. Modified Gulf of California model for South Georgia, north Scotia Ridge, and implications for the Rocas Verdes back-arc basin, southern Andes. GEOLOGY 18, 497500.2.3.CO;2>CrossRefGoogle Scholar
Alric, V., Feraud, G., Bertrand, H., Haller, M., Labudia, C.&Zubia, M. 1995. 40Ar/39Ar dating of Patagonian Jurassic volcanism: new constraints on Gondwana break-up. TERRA NOVA ABSTR SUPPL 7(1-2), 353.Google Scholar
Arrondo, O. G. 1972. Estudio geológico y paleontológico en la estancia La Juanita y alrededores, provincia de Santa Cruz, Argentina. REV MUS LA PLATA VIII PALEONTOL 43.Google Scholar
Atherton, M. P.&Petford, N. 1993. Generation of sodium-rich magmas from newly underplated basaltic crust. NATURE 362, 144–6.CrossRefGoogle Scholar
Bea, F., Fershtater, G.&Corretgé, L. G. 1992. The geochemistry of phosphorus in granite rocks and the effect of aluminium. LITHOS 29, 4356.CrossRefGoogle Scholar
Bruce, R. M. 1988. Petrochemical evolution and physical construction of an Andean arc: evidence from the southern Patagonian batholith at 53° S. Ph.D. Thesis, Colorado School of Mines.Google Scholar
Carmichael, I. S. E. 1963. The crystallization of feldspar in volcanic acid rocks. Q J GEOL SOC LONDON 119, 95131.CrossRefGoogle Scholar
Defant, M. J., Richerson, P. K., De Boer, J. Z., Stewart, R. H., Maury, R. C, Bellon, H., Drummond, M. S., Feigenson, M. D.&Jackson, T. E. 1991. Dacite genesis via both slab melting and differentiation: petrogenesis of La Yeguada Volcanic Complex, Panama. J PETROL 32, 1101–42.Google Scholar
DePaolo, D. J., Linn, A. M.&Schubert, G. 1991. The continental crustal age distribution: methods of determining mantle separation ages from Sm-Nd isotopic data and application to the Southwestern United States. J GEOPHYS RES 96B, 2071–88.CrossRefGoogle Scholar
Deruelle, B. 1991. Petrology of the Quaternary shoshonitic lavas of northwestern Argentina. In Harmon, R. S.&Rapela, C. W. (eds) Andean magmatism and its tectonic setting. GEOL SOC AM SPEC PAP 265, 201–16.Google Scholar
Franchi, M. R.&Page, R. F. N. 1980. Los basaltos cretácicos y la evolutión magmática del Chubut occidental. REV ASOC GEOL ARGENTINA 35(2), 208–29.Google Scholar
Gana, P. 1991. Magmatismo bimodal del Triásico superior-Jurásico inferior, en la Cordillera de la Costa, provincias de Elqui y Limari, Chile. REV GEOL CHILE 18(1-2), 5567.Google Scholar
Gans, P. B., Mahood, G. A. N.&Schermer, E. 1989. Synextensional magmatism in the Basin and Range Province; a case study from the eastern Great Basin. GEOL SOC AM SPEC PAP 233, 53pp.Google Scholar
Godeas, M. 1985. Geología en el Bajo de La Leona y su mineralizatión asociada, provincia de Santa Cruz. REV ASOC GEOL ARGENTINA 40(3–4), 262–78.Google Scholar
Godeas, M. 1993. Geoquímica y marco tectónico de los granitoides en el Bajo de La Leona (Formatión la Leona), provincia de Santa Cruz. REV ASOC GEOL ARGENTINA 47(3), 347–47.Google Scholar
González Bonorino, G. 1990. Cambios relativos en el nivel del mar y su posible relation con magmatismo en el Jurásico temprano, Formatión Lepa, Chubut noroccidental, Argentina. REV ASOC GEOL ARGENTINA 45(1–2), 129–35.Google Scholar
González Díaz, E. F. 1982. Chronological zonation of granitic plutonism in the northern Patagonian Andes of Argentina: the migration of intrusive cycles. EARTH SCI REV 18, 365–93.CrossRefGoogle Scholar
Gordon, A.&Ort, M. H. 1993. Edad y correlatión del plutonismo, subCordillerano en las provincias de Río Negro y Chubut (41°–42° 30ʹ L.S.). XII CONGR GEOL ARGENTINO, MENDOZA ACTAS IV, 120–7.Google Scholar
Guowei Xu, T., Wil, T. M.&Powel, R. 1994. A calculated petrogenetic grid for the system K2O-FeO-MgO-Al2O3-SiO2-H2O, with J particular reference to contact metamorphosed pelites. J METAMORPHIC GEOL 12, 99119.Google Scholar
Kay, S. M.&Gordillo, C. E. 1994. Pocho volcanic rocks and the melting of depleted continental lithosphere above a shallowly dipping subduction zone. CONTRIB MINERAL PETROL 117, 2544.CrossRefGoogle Scholar
Kay, S. M., Ramos, V. A.&Márquez, M. 1993. Evidence in Cerro Pampa volcanic rocks for slab-melting prior to ridge-trench collision in southern South America. J GEOL 101, 703–14.CrossRefGoogle Scholar
Kepezhinskas, P. 1995. Diverse shoshonite magma series in the Kamchatka arc: relationships between intra-arc extension and composition of alkaline magmas. In Smellie, J. L. (ed.) Volcanism associated with extension at consuming plate margins. SPEC PUBL GEOL SOC LONDON 81, 249–64.Google Scholar
Lameyre, J. 1987. Granites and evolution of the crust. REV BRAS GEOCIÊNC 17, 349–59.Google Scholar
Le Maitre, R. W., Bateman, P., Dubek, A., Keller, J., Lameyre, J., Le Bas, M. J., Sabine, M. A., Schmid, R., Sorensen, H., Streckeisen, A., Woolley, A. R.&Zanettin, B. (eds) 1989. A classification of igneous rocks and glossary of terms: recommendations of the International Union of Geological Sciences Subcommission on the Systematic of Igneous Rocks. Oxford: Blackwell, 193 pp.Google Scholar
Linares, E.&González, R. R. 1990. Catálogo de edades radimétricas de la República Argentina 1957–1987. ASOC GEOL ARGENTINA PUBL ESP SERIE “B” 19, 628 pp.Google Scholar
Luth, W. C, Jahns, R. H.&Tuttle, O. F. 1964. The granite system at pressures of 4 to 10 kilobars. J GEOPHYS RES 69, 759–73.CrossRefGoogle Scholar
McCarthy, T. S.&Robb, L. J. 1978. On the relation between cumulus mineralogy and trace and alkali element chemistry in the Archean granite from the Barberton region, South Africa. GEOCHEM COSMOCHIM ACTA 42, 21–6.Google Scholar
Márquez, M. J. 1994. El plutonismo Mesozoico en el Macizo del Deseado y su vinculacion con mineralizatión tipo cobre diseminado, Prov. de Santa Cruz, Argentina. ZENTRALBL GEOL PALÄONTOL Teil I H.1/2, 115–32.Google Scholar
Miller, C. F.&Barton, M. D. 1990. Phanerozoic plutonism in the Cordilleran interior U.S.A. In Kay, S. M.&Rapela, C. W. (eds) Plutonism from Antarctica to Alaska. GEOL SOC AM SPEC PAP 241, 213–32.Google Scholar
Miniussi, C, Merodio, J. C, Posadas, V. G.&Meda, J. 1980. Determinatión de elementos minoritarios y traza por fluorescencia de rayos-X. REV ASOC ARGENTINA MINERAL PETROL SEDIMENTOL 11, 1521.Google Scholar
Mittlefehldt, D. W.&Miller, C. F. 1983. Geochemistry of the Sweetwater Wash Pluton, California: implications for ‘anomalous’ trace element behaviour during differentiation of felsic magmas. GEOCHEM COSMOCHIM ACTA 47, 109–24.CrossRefGoogle Scholar
Morrison, G. W. 1980. Characteristics and tectonic setting of the shosonitic rock association. LITHOS 13, 97108.CrossRefGoogle Scholar
Muir, R. J., Weaver, S. D., Bradshaw, J. D., Eby, G. N.&Evans, J. E. 1995. The Cretaceous Separation Point batholith, New Zealand: granitoid magmas formed by melting of mafic lithosphere. J GEOL SOC LONDON 152, 689701.CrossRefGoogle Scholar
Pankhurst, R. J.&Rapela, C. W. 1995. Production, of Jurassic rhyolite by anatexis of the lower crust of Patagonia. EARTH PLANET SCI LETT 134, 2336.Google Scholar
Pankhurst, R. J., Rapela, C. W.&Márquez, M. 1993. Geocronologia y petrogénesis de los granitoides jurásicos del noreste del Macizo del Deseado. XII CONGR GEOL ARGENTINO MENDOZA ACTAS IV, 134–41.Google Scholar
Parada, M. A., Levi, B.&Nystrom, J. O. 1991. Geochemistry of the Triassic to Jurassic plutonism of central Chile (30 to 33° S); petrogenetic implications and a tectonic discussion. In Harmon, R. S.&Rapela, C. W. (eds) Andean magmatism and its tectonic setting. GEOL SOC AM SPEC PUBL 265, 99112.Google Scholar
Pearce, J. A., Harris, N. B. W.&Tindle, A. G. 1984. Trace element discrimination diagrams for the tectonic interpretation of granitic rocks. J PETROL 25, 956–83.CrossRefGoogle Scholar
Peccerillo, A.&Taylor, S. R. 1976. Geochemistry of Eocene calcalkaline volcanic rocks from the Kastamonu area, northern Turkey. CONTRIB MINERAL PETROL 58, 6381.CrossRefGoogle Scholar
Pitcher, W. S. 1979. The nature, ascent and emplacement of granitic magmas. J GEOL SOC LONDON 136, 627–62.Google Scholar
Pitcher, W. S. 1993. The nature and origin of granite. London: Blackie Academic & Professional, 321 pp.CrossRefGoogle Scholar
Rapela, C. W.&Alonso, G. 1991. Litología y geoquimíca del Batolito de la Patagonia Central. VI CONGR GEOL CHILENO VIŃA DEL MAR ACTAS 1, 236–40.Google Scholar
Rapela, C. W.&Kay, S. M. 1988. The Late Paleozoic to Recent magmatic evolution of northern Patagonia. EPISODES 11, 175–82.Google Scholar
Rapela, C. W.&Pankhurst, R. J. 1992. The granites of northern Patagonia and the Gastre Fault System in relation to the breakup of Gondwana. In Storey, B. C, Alabaster, T.&Pankhurst, R. J. (eds) Magmatism and the causes of continental break-up. SPEC PUBL GEOL SOC LONDON 68, 209–20.Google Scholar
Rapela, C. W., Pankhurst, R. J.&Harrison, S. M. 1991. Triassic ‘Gondwana’ granites of the Gastre district, North Patagonian Massif. TRANS R SOC EDINBURGH EARTH SCI 83, 291304.Google Scholar
Rapela, C. W.&Shaw, D. M. 1979. Trace and major element models of granitoid genesis in the Pampean Ranges, Argentina. GEOCHEM COSMOCHIM ACTA 43, 1117–29.CrossRefGoogle Scholar
Sabatier, H. 1980. Vaugnérites et granites: une association particulière de roches grenues acides et basiques. BULL MINERAL 103, 507–22.Google Scholar
Stein, H. J.&Crock, J. G. 1990. Late Cretaceous-Tertiary magmatism in the Colorado Mineral Belt; rare earth element and samarium–neodymium isotopic studies. In Anderson, J. L. (ed.) The nature and origin of Cordilleran magmatism. MEM GEOL SOC AM 174, 195223.Google Scholar
Storey, B. C, Alabaster, T., Hole, M. J., Pankhurst, R. J.&Wever, H. E. 1992. Role of subduction-plate boundary forces during the initial stages of Gondwana break-up: evidence from the protoPacific margin of Antarctica. In Storey, B. C, Alabaster, T.&Pankhurst, R. J. (eds) Magmatism and the causes of continental break-up. SPEC PUBL GEOL SOC LONDON 68, 149–63.CrossRefGoogle Scholar
Varela, R., Pezzuchi, H., Genini, A.&Zubia, M. 1991. Dataciones en el Jurásico inferior de rocas magmáticas del nordeste del Macizo del Deseado, Santa Cruz. REV ASOC GEOL ARGENTINA 46(3–4), 257–62.Google Scholar
Weaver, S. G. 1988. The Patagonian batholith at 48°S latitude. Chile: implication for the petrochemical and geochemical evolution of calcalkaline batholiths. Ph.D. Thesis, Colorado School of Mines.Google Scholar
Winkler, H. G. F.&Lindemann, W. 1972. The system Qz-Or-An-H2O within Qz-Or-Ab-An-H2O. Application to granitic magma formation. N JAHRB MINERAL MONATSCHR 49–61.Google Scholar