Skip to main content Accessibility help
×
Home

The Layos Granite, Hercynian Complex of Toledo (Spain): an example of parautochthonous restite-rich granite in a granulitic area

  • L. Barbero (a1) and C. Villaseca

Abstract

The Layos Granite forms elongated massifs within the Toledo Complex of central Spain. It is late-tectonic with respect to the F2 regional phase and simultaneous with the metamorphic peak of the region, which reached a maximum temperature of 800–850°C and pressures of 400–600 MPa. Field studies indicate that this intrusion belongs to the “regional migmatite terrane granite” type. This granite is typically interlayered with sill-like veins and elongated bodies of cordierite/garnet-bearing leucogranites. Enclaves are widespread and comprise restitic types (quartz lumps, biotite, cordierite and sillimanite-rich enclaves) and refractory metamorphic country-rocks including orthogneisses, amphibolites, quartzites, conglomerates and calc-silicate rocks.

These granites vary from quartz-rich tonalites to melamonzogranites and define a S-type trend on a QAP plot. Cordierite and biotite are the mafic phases of the rocks. The particularly high percentage of cordierite (10%–30%) varies inversely with the silica content. Sillimanite is a common accessory mineral, always included in cordierite, suggesting a restitic origin. The mineral chemistry of the Layos Granite is similar to that of the leucogranites and country-rock peraluminous granulites (kinzigites), indicating a close approach to equilibrium. The uniform composition of plagioclase (An25), the high albitic content of the K-feldspar, the continuous variation in the Fe/Mg ratios of the mafic minerals, and the high Ti content of the biotites (2.5–6.5%) suggest a genetic relationship.

Geochemically, the Layos Granite is strongly peraluminous. Normative corundum lies between 4% and 10% and varies inversely with increase in SiO2. The CaO content is typically low (<1.25%) and shows little variation; similarly the LILE show a limited range. On many variation diagrams, linear trends from peraluminous granulites to the Layos Granite and associated leucogranite can be observed. The chemical characteristics argue against an igneous fractionation or fusion mechanism for the diversification of the Layos Granite. A restite unmixing model between a granulitic pole (represented by the granulites of the Toledo Complex) and a minimum melt (leucogranites) could explain the main chemical variation of the Layos Granite. Melting of a pelitic protolith under anhydrous conditions (biotite dehydration melting) could lead to minimum-temperature melt compositions and a strongly peraluminous residuum.

For the most mafic granites (61–63% SiO2), it is estimated that the trapped restite component must have been around 65%. This high proportion of restite is close to the estimated rheological critical melt fraction, but field evidence suggests that this critical value has been exceeded. This high restite component implies high viscosity of the melt which, together with the anhydrous assemblage of the Layos Granite and the associated leucogranites, indicates H2O-undersaturated melting conditions. Under such conditions, the high viscosity magma (crystal-liquid mush) had a restricted movement capacity, leading to the development of parautochthonous plutonic bodies.

Copyright

References

Hide All
Andonaegui, P. 1990. Geoquímica y geocronología de los granitoides del sur de Toledo. Tesis doctoral, Universidad Complutense de Madrid, Spain.
Arzi, A. A. 1978. Critical phenomena in the rheology of partially melted rocks. TECTONOPHYSICS 44, 173–89.
Barbero, L. & Villaseca, C. 1988. Gabros coroníticos en el macizo cristalino de Toledo. GEOGACETA 5, 67–9.
Barbero, L., Villaseca, C. & Andonaegui, P. 1990. On the origin of the gabbro-tonalite-monzogranite association from Toledo area (Hercynian Iberian belt). SCHWEIZ MINERAL PETROGR MITT 7, 209–21.
Barbey, P., Bertrand, J. M., Angoua, S. & Dautei, D. 1989. Petrology and U/Pb chronology of the Telohat migmatites (Aleksod, Central Hoggar). CONTRIB MINERAL PETROL 101, 207–19.
Barbey, P., Macaudiere, J. & Uzenti, J. P. 1990. High-pressure dehydration melting of metapelites: evidence from migmatites of Yaoundí (Cameroon). J PETROL 31, 401–28.
Bohlen, J. R. & Liotta, J. J. (1986). A barometer for garnet amphibolites and garnet granulites. J PETROL 27, 1024–34.
Bowden, P., Batchelor, R. A., Chappell, B. W., Didier, J. & Lameyre, J. 1984. Petrological, geochemical and source criteria for the classification of granitic rocks: a discussion. PHYS EARTH PLANET INTERIORS 35, 111.
Brandebourger, E. 1984. Les granitoides hercyniens tardifs de la Sierra de Guadarrama (Système Central, Espagne). Pétrographie et geochimie, These 3eme Cycle, CNRS, France.
Brändle, J. L. & Cerqueira, I. 1972. Determinación de elementos menores en rocas silicatadas por fluorescencia de rayos X. ESTUD GEOL 28, 445–51.
Casillas, R. 1989. Las asociaciones plutónicas tardihercínicas del sector occidental de la Sierra de Guadarrama—Sistema Central Español, (Las Navas del Marqués–San Martín de Valdeiglesias). Petrología, geoquimíca, génesis y evolución. Tesis Doctoral, Universidad Complutense de Madrid, Spain.
Casquet, C., Fuster, J. M., Casado, J. M.González, Peinado, M. & Villaseca, C. 1988. Extensional tectonics and granite emplacement in the Spanish Central System. A discussion. EUROPEAN SCI FOUND (SPEC VOL), PROC 5th WORK, 6576.
Chappell, B. W., White, A. J. R. & Wyborn, D. 1987. The importance of residual source material (restite) in granite petrogenesis. J PETROL 28, 1111–38.
Clarke, R. G. & Lyons, J. B. 1986. Petrogenesis of the Kingsman intrusive suite: peraluminous granitoids of Western New Hampshire. J PETROL 27, 1365–93.
Debon, F. & Fort, P.Le 1983. A chemical-mineralogical classification of common plutonic rock and associations. TRANS R SOC EDINBURGH: EARTH SCI 73, 135–49.
Moro, A.Del 1987. Sistematica Rb/Sr di alcune magmatiti tardo-erciniche dell'area italiana. RIC SCI EDUC PERM 52, 107–32.
Dymek, F. R. 1983. Titanium, aluminium and interlayered cation substitution in biotite from high-grade gneisses, west Greenland. AM MINERAL 68, 880–99.
Ebadi, A. & Johannes, W. 1991. Beginning of melting and composition of first melts in the system Qz–Ab–Or–H2O–CO2. CONTRIB MINERAL PETROL 106, 286–95.
Ferry, J. M. & Spear, F. S. 1978. Experimental calibration of the partitioning of Fe and Mg between garnet and biotite. CONTRIB MINERAL PETROL 66, 113–7.
Flood, R. H. & Shaw, S. E. 1975. A cordierite-bearing granite suite from the New England batholith. N.S.W. Australia. CONTRIB MINERAL PETROL 52, 157–64.
Frost, B. R. & Chacko, T. 1989. The granulite uncertainty principle: limitations on thermobarometry in granulites. J GEOL 97, 435–50.
Ganguly, J. & Saxena, S. K. 1984. Mixing properties of aluminosilicate garnets: constrains for natural and experimental data and application to geothermo-barometry. AM MINERAL 69, 8897.
Ghent, E. D. & Stout, M. Z. 1984. TiO2 activity in metamorphosed pelitic and basic rocks: principles and applications to metamorphism in southeastern Canadian Cordillera. CONTRIB MINERAL PETROL 86, 248–55.
Grapes, R. H. 1985. Melting and thermal reconstruction of pelitic xenolith, Wehr volcano, east Eifel, west Germany. J PETROL 27, 343–96.
Green, D. & Ringwood, A. 1967. An experimental investigation of the gabbro to eclogite transformation and its petrological applications. GEOCHIM COSMOCHIM ACTA 31, 767833.
Gromet, L. P., Dymek, R. F., Haskin, L. A. & Korotev, R. L. 1984. The “North American Shale composite”: its compilation, major and trace element characteristics. GEOCHIM COSMOCHIM ACTA 48, 2469–82.
Hodges, K. V. & Spear, F. S. 1982. Geothermometry, geobarometry and the A12O3 triple point at Mt Moosilauke, New Hampshire. AM MINERAL 67, 1118–34.
Holdaway, M. J. & Lee, S. N. 1977. Fe-Mg cordierite stability in high-grade pelitic rocks based on experimental, theoretical and natural observations. CONTRIB MINERAL PETROL 63, 175–98.
Ibarguchi, J. I. G. & Martínez, F. J. 1982. Petrology of garnet-cordierite-sillimanite gneisses from the E1 Tormes thermal Dome, Iberian Hercynian foldbelt (W Spain). CONTRIB MINERAL PETROL 80, 1424.
Jones, K. A. & Brown, M. 1990. High-temperature ‘clockwise’ P-T paths and melting in the development of regional migmatites: an example from southern Brittany, France. J MET GEOL 8, 551–78.
Julivert, M., Fontboté, J. M., Ribeiro, A. & Conde, L. E. 1974. Memoria explicativa del mapa tectónico de la Península Ibérica y Baleares. Escala 1:100,000. I.G.M.E., Madrid, Spain.
Lavrenteva, E. V. & Perchuck, L. L. 1981. Cordierite-garnet thermometer. A collection of theses. ACAD SCI USSR 259, 607700.
Breton, N.Le & Thompson, A. B. 1988. Fluid-absent (dehydration) melting of biotite in metapelites in the early stages of crustal anatexis. CONTRIB MINERAL PETROL 99, 226–37.
Escorza, C.Martín & Martínez, J.López 1978. Análisis mesoestructural en la Unidad Migmatítica de Toledo. ESTUD GEOL 34, 3443.
Masuda, A., Nakamura, N. & Tanaka, T. 1973. Fine structures of mutual normalized rare earth patterns of chondrites. GEOCHIM COSMOCHIM ACTA 37, 239–48.
McRae, N. D. & Nesbitt, H. W. 1980. Partial melting of common metasedimentary rocks: a mass balance approach. CONTRIB MINERAL PETROL 75, 21–6.
Miller, C. F. 1985. Are strongly peraluminous magmas derived from pelitic sedimentary sources? J GEOL 93, 673–89.
Miller, C. F., Watson, E. B. & Harrison, T. M. 1988. Perspectives on the source, segregation and transport of granitoid magmas. TRANS R SOC EDINBURGH EARTH SCI 79, 135–56.
Minster, F. J. & Allègre, C. J. 1977. Systematic use of trace elements in igneous processes. Part I: Fractional crystallization processes in volcanic suites. CONTRIB MINERAL PETROL 60, 5775.
Moller, P. & Muecke, G. K. 1984. Significance of europium anomalies in silicate melts and crystal melt equilibria: a re-evaluation. CONTRIB MINERAL PETROL 87, 242–50.
Patiño, A. & Johnston, A. 1991. Phase equilibria and melt productivity in the pelitic system: implications for the origin of peraluminous granitoids and aluminous granulites. CONTRIB MINERAL PETROL 107, 202–18.
Rottura, A., Bargossi, G. M., Caironi, V., D'Amico, C. & Maccarrone, E. 1989. Petrology and geochemistry of late-Hercynian granites from the Western Central System of the Iberian Massif. EUR J MINER 1, 667–83.
Rottura, A., Bargossi, G. M., Caironi, V., Moro, A.Del, Maccarrone, E., Macera, P., Paglionico, A.Petrini, R.Piccarreta, G. & Poli, G. 1990. Petrogenesis of contrasting Hercynian granitoids from the Calabrian Arc, southern Italy. LITHOS 24, 97119.
Sawyer, E. W. 1987. The role of partial melting and fractional crystallisation in determining discordant migmatite leucosome compositions. J PETROL 28, 445–73.
Sengupta, P., Dasgupta, S. K., Bhattacharya, P. K. & Mukherjee, M. 1990. An orthopyroxene-biotite geothermometer and its application in crustal granulites and mantle derived rocks. J MET GEOL 8, 191–8.
Speer, J. A. 1981. Petrology of cordierite- and almandine-bearing granitoid plutons of the southern Appalachian piedmont U.S.A. CAN MINERAL 19, 3546.
Streckeisen, A. 1976. To each plutonic rock its proper name. EARTH SCI REV 12, 113.
Thompson, R. N., Morrison, M. A., Hendry, G. L. & Parry, S. J. 1984. An assessment on the relative roles of crust and mantle magma genesis: an elemental approach. PHILOS TRANS R SOC LONDON A310, 549–90.
Van der Molen, I. & Paterson, M. S. 1979. Experimental deformation of partially-melted granite. CONTRIB MINERAL PETROL 70, 299318.
Vialette, Y., Casquet, C., Fúster, J. M., Ibarrola, E., Navidad, M., Peinado, M. & Villaseca, C. 1987. Geochronological study of orthogneisses from the Sierra de Guadarrama (Spanish Central System). N JARB MINER MH JG H10, 465–79.
Vielzeuf, D. 1983. The spinel and quartz associations in high grade xenoliths from Tallante (SE Spain) and their potential use in geothermometry and barometry. CONTRIB MINERAL PETROL 82, 301–11.
Vielzeuf, D., Clemens, J. D., Pin, C. & Moinet, E. 1990. Granites, granulites and crustal evolution. In Vielzeuf, D. & Vidal, Ph. (eds) Granulites and crustal evolution. NATO ASI SCI SER C 311, 5985.
Vielzeuf, D. & Holloway, J. R. 1988. Experimental determination of the fluid-absent melting relations in the pelitic system. Consequences for crustal differentiation. CONTRIB MINERAL PETROL 98, 257–76.
Villaseca, C. 1983. Evolución metamórfica del sector centroseptentrional de la Sierra de Guadarrama. Tesis Doctoral 216/84, Universidad Complutense de Madrid, Spain.
Villaseca, C. & Barbero, L. (in press). Los granates de rocas metapelíticas de la región central española: implicaciones en el origen de granates en granitoides. GEOGACETA (in press).
Vry, J. K., Brown, E. B. & Valley, J. W. 1990. Cordierite volatile content and the role of CO2 in high-grade metamorphism. AM MINERAL 75, 7188.
Watson, E. B. 1987. The role of accessory minerals in granitoid geochemistry. 1ST HUTTON SYMP ABSTR, 1921.
Wells, P. R. A. 1977. Pyroxene thermometry in simple and complex systems. CONTRIB MINERAL PETROL 62, 129–39.
Whalen, J. B. & Chappell, B. W. 1988. Opaque mineralogy and mafic mineral chemistry of I- and S-type granites of the Lachlan fold belt, southern Australia. AM MINERAL 73, 281–96.
White, A. J. R. & Chappell, B. W. 1987. Some supracrustal (S-type) granites of the Lachlan Fold Belt. TRANS R SOC EDINBURGH EARTH SCI 79, 169–81.
Wickham, S. M. 1987a. Crustal anatexis and granite petrogenesis during low pressure regional metamorphism in the Trois Seigneurs massif, Pyrenees, France. J PETROL 28, 127–69.
Wickham, S. M. 1987b. The segregation and emplacement of granitic magmas. J GEOL SOC LONDON 144, 281–97.
Wildberg, H. G. H., Bischoff, L. & Baumann, A. 1989. U-Pb ages of zircons from meta-igneous and metasedimentary rocks of the Sierra de Guadarrama: implications for the Central Iberian crustal evolution. CONTRIB MINERAL PETROL 103, 253–62.

Keywords

The Layos Granite, Hercynian Complex of Toledo (Spain): an example of parautochthonous restite-rich granite in a granulitic area

  • L. Barbero (a1) and C. Villaseca

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed