Skip to main content Accessibility help
×
Home

Phylogenetic patterns of character evolution in the hyobranchial apparatus of early tetrapods

Published online by Cambridge University Press:  29 November 2013


Florian Witzmann
Affiliation:
Museum für Naturkunde, Leibniz-Institut für Evolutions- und Biodiversitätsforschung, Invalidenstraße 43, D-10115 Berlin, Germany. E-mail: florian.witzmann@mfn-berlin.de
Corresponding

Abstract

The morphologies of the hyobranchial apparatus in early tetrapods are reviewed, based primarily on first-hand examination and supplemented by published descriptions. The basic arrangement of the “aquatic” hyobranchium, with four pairs of branchial arches and internal gills, was conserved to a remarkable degree across the fish–to–tetrapod transition and was retained in further evolution in adults of several tetrapod lineages. Thus, a fish-like hyobranchium in basal tetrapods does not necessarily represent a larval or paedomorphic character, respectively, as was often suggested in analogy to extant salamanders. Rather, it represents the plesiomorphic state of the adult hyobranchium in tetrapods. The changes in the hyobranchium during the fish–to–tetrapod transition include the reduction of the number of skeletal elements and their morphological simplification. In all three presently discussed scenarios of lissamphibian origin, the temnospondyl, lepospondyl and diphyly hypotheses, the internal gills were reduced independently within temnospondyls and on the amniote stem below seymouriamorphs. Evidence of remodelling into a true “terrestrial” hyobranchium, with reduction of the posterior branchial arches and modification to support terrestrial tongue feeding, is scarce in early tetrapods. It evolved within temnospondyls in zatracheids, amphibamids and lissamphibians, as well as once or several times in early amniotes or in their immediate stem-forms.


Type
Articles
Copyright
Copyright © The Royal Society of Edinburgh 2013 

Access options

Get access to the full version of this content by using one of the access options below.

References

Anderson, J. S., Carroll, R. L. & Rowe, T. B. 2003. New information on Lethiscus stocki (Tetrapoda: Lepospondyli: Aïstopoda) from high-resolution computed tomography and a phylogenetic analysis of Aïstopoda. Canadian Journal of Earth Sciences 40, 1071–83.CrossRefGoogle Scholar
Anderson, J. S., Reisz, R. R., Scott, D., Fröbisch, N. B. & Sumida, S. S. 2008. A stem batrachian from the Early Permian of Texas and the origin of frogs and salamanders. Nature 453, 515–18.CrossRefGoogle ScholarPubMed
Andrews, S. M. & Carroll, R. L. 1991. The order Adelospondyli: Carboniferous lepospondyl amphibians. Transactions of the Royal Society of Edinburgh: Earth Sciences 82, 239–75.CrossRefGoogle Scholar
Arratia, G. & Schultze, H.-P. 1990. The urohyal: development and homology within osteichthyans. Journal of Morphology 203, 247–82.CrossRefGoogle ScholarPubMed
Berman, D. S. 1973. A trimerorhachid amphibian from the Upper Pennsylvanian of New Mexico. Journal of Paleontology 47, 932–45.Google Scholar
Bossy, K. A. & Milner, A. C. 1998. Order Nectridea. In Wellnhofer, P. (ed.) Encyclopedia of Paleoherpetology, vol. 1: Lepospondyli, 73131. München: Verlag Dr. Friedrich Pfeil.Google Scholar
Bourget, H. & Anderson, J. S. 2011. A new amphibamid (Temnospondyli: Dissorophoidea) from the Early Permian of Texas. Journal of Vertebrate Paleontology 31, 3249.CrossRefGoogle Scholar
Boy, J. A. 1972. Die Branchiosaurier (Amphibia) des saarpfälzischen Rotliegenden (Unter-Perm, SW-Deutschland). Abhandlungen des Hessischen Landesamtes für Bodenforschung 65, 1137.Google Scholar
Boy, J. A. 1974. Die Larven der rhachitomen Amphibien (Amphibia: Temnospondyli; Karbon–Trias). Paläontologische Zeitschrift 48, 236–82.CrossRefGoogle Scholar
Boy, J. A. 1985. Über Micropholis, den letzten Überlebenden der Dissorophoidea (Amphibia, Temnospondyli; Unter-Trias). Neues Jahrbuch für Geologie und Paläontologie, Monatshefte 1985, 2945.Google Scholar
Boy, J. A. 1988. Über einige Vertreter der Eryopoidea (Amphibia: Temnospondyli) aus dem europäischen Rotliegend (?höchstes Karbon–Perm). 1. Sclerocephalus. Paläontologische Zeitschrift 62, 107–32.CrossRefGoogle Scholar
Boy, J. A. 1990. Über einige Vertreter der Eryopoidea (Amphibia: Temnospondyli) aus dem europäischen Rotliegend (?höchstes Karbon–Perm). 3. Onchiodon. Paläontologische Zeitschrift 64, 287312.CrossRefGoogle Scholar
Boy, J. A. 1993. Über einige Vertreter der Eryopoidea (Amphibia: Temnospondyli) aus dem europäischen Rotliegend (?höchstes Karbon–Perm). 4. Cheliderpeton latirostre. Paläontologische Zeitschrift 67, 123–43.CrossRefGoogle Scholar
Boy, J. A. 1995. Über die Micromelerpetontidae (Amphibia: Temnospondyli) 1. Morphologie und Paläoökologie des Micromelerpeton credneri (Unter-Perm; SW-Deutschland). Paläontologische Zeitschrift 69, 429–57.CrossRefGoogle Scholar
Boy, J. A. 2003. Paläoökologische Rekonstruktion von Wirbeltieren: Möglichkeiten und Grenzen. Paläontologische Zeitschrift 77, 123–53.CrossRefGoogle Scholar
Boy, J. A. & Sues, H.-D. 2000. Branchiosaurs: Larvae, Metamorphosis and Heterochrony in Temnospondyls and Seymouriamorphs. In Heatwole, H. & Carroll, R. L. (eds) Amphibian Biology 4: Palaeontology, 1150–97. Chipping Norton: Surrey Beatty and Sons.Google Scholar
Broili, F. & Schröder, J. 1937. Beobachtungen an Wirbeltieren der Karrooformation. XXV. Über Micropholis Huxley. XXVI. Über Lydekkerina Broom. Sitzungsberichte der bayerischen Akademie der Wissenschaften, mathematisch-naturwissenschaftliche Abteilung 1937, 1957.Google Scholar
Bulanov, V. V. 2003. Evolution and systematics of seymouriamorph parareptiles. Paleontological Journal 37 (Supplement 1), 1105.Google Scholar
Bystrow, A. P. 1938. Dvinosaurus als neotenische Form der Stegocephalen. Acta Zoologica 19, 209–95.CrossRefGoogle Scholar
Carroll, R. L. 1969. A new family of Carboniferous amphibians. Palaeontology 12, 537–48.Google Scholar
Carroll, R. L. 1998. Order Aïstopoda. In Wellnhofer, P. (ed.) Encyclopedia of Paleoherpetology, vol. 1: Lepospondyli, 163–82. München: Verlag Dr. Friedrich Pfeil.Google Scholar
Carrol, R. L. 2004. The importance of branchiosaurs in determining the ancestry of the modern amphibian orders. Neues Jahrbuch für Geologie und Paläontologie, Abhandlungen 232, 157–80.Google Scholar
Carroll, R. L. 2007. The Palaeozoic ancestry of salamanders, frogs and caecilians. Zoological Journal of the Linnean Society 150 (Supplement 1), 1140.CrossRefGoogle Scholar
Carroll, R. L. & Gaskill, P. 1978. The order Microsauria. American Philosophical Society Memoirs 126, 1211.Google Scholar
Clack, J. A. 1992. The stapes of Acanthostega gunnari . In Webster, D. B., Fay, R. R. & Popper, A. N. (eds) The evolutionary biology of hearing, 405–20. Berlin and Heidelberg: Springer Verlag.CrossRefGoogle Scholar
Clack, J. A. 2003. A new baphetid (stem tetrapod) from the Upper Carboniferous of Tyne and Wear, U.K., and the evolution of the tetrapod occiput. Canadian Journal of Earth Sciences 40, 483–98.CrossRefGoogle Scholar
Clack, J. A. 2012. Gaining ground. The origin and evolution of tetrapods. Second edition. Bloomington and Indianapolis: Indiana University Press.Google Scholar
Clack, J. A., Ahlberg, P. E., Finney, S. M., Dominguez Alonso, P., Robinson, J. & Ketcham, R. A. 2003. A uniquely specialized ear in a very early tetrapod. Nature 425, 6569.CrossRefGoogle Scholar
Clack, J. A. & Coates, M. I. 1993. Acanthostega gunnari – our present connection. In Hoch, E & Brantsen, A. K. (eds) Deciphering the natural world and the role of museums and collections, 3942. Copenhagen: Geologisk Museum Press.Google Scholar
Clack, J. A. & Milner, A. R. 2010. Morphology and systematics of the Pennsylvanian amphibian Platyrhinops lyelli (Amphibia: Temnospondyli). Transactions of the Royal Society of Edinburgh: Earth Sciences 100(for 2009), 275–95.CrossRefGoogle Scholar
Coates, M. I. & Clack, J. A. 1991. Fish-like gills and breathing in the earliest known tetrapod. Nature 352, 234–36.CrossRefGoogle Scholar
Damiani, R. J. & Warren, A. A. 1997. Re-interpretation of Parotosuchus wadei Cosgriff, a capitosaurid from the Triassic Narrabeen Group at Gosford, New South Wales, with comments on its growth stage. Alcheringa 21, 281–89.CrossRefGoogle Scholar
Deban, S. M. & Wake, D. B. 2000. Aquatic Feeding in Salamanders. In Schwenk, K. (ed.) Feeding: form, function and evolution in tetrapod vertebrates, 6594. San Diego: Academic Press.CrossRefGoogle Scholar
Downs, J. P., Daeschler, E. B., Jenkins, F. A. Jr. & Shubin, N. H. 2008. The cranial endoskeleton of Tiktaalik roseae . Nature 455, 925–29.CrossRefGoogle ScholarPubMed
Downs, J. P., Daeschler, E. B., Jenkins, F. A. Jr. & Shubin, N. H. 2011. A new species of Laccognathus (Sarcopterygii, Porolepiformes) from the Late Devonian of Ellesmere Island, Nunavut, Canada. Journal of Vertebrate Paleontology 31, 981–96.CrossRefGoogle Scholar
Drüner, L. 1902. Studien zur Anatomie des Zungenbein-, Kiemenbogen- und Kehlkopfmuskeln der Urodelen. 1. Theil. Zoologische Jahrbücher, Abteilung Anatomie und Ontogenie der Tiere 15, 435622.Google Scholar
Drüner, L. 1904. Studien zur Anatomie des Zungenbein-, Kiemenbogen- und Kehlkopfmuskeln der Urodelen. 2. Theil. Zoologische Jahrbücher, Abteilung Anatomie und Ontogenie der Tiere 15, 361690.Google Scholar
Elwood, J. R. L. & Cundall, D. 1994. Morphology and behavior of the feeding apparatus in Cryptobranchus alleganiensis (Amphibia: Caudata). Journal of Morphology 220, 4770.CrossRefGoogle Scholar
Forey, P. 1998. History of the coelacanth fishes. London: Chapman and Hall.Google Scholar
Fröbisch, N. B. & Reisz, R. R. 2008. A new Lower Permian amphibamid (Dissorophoidea, Temnospondyli) from the fissure fill deposits near Richards Spur, Oklahoma. Journal of Vertebrate Paleontology 28, 1015–30.CrossRefGoogle Scholar
Gao, Ke-Qin & Shubin, N. H. 2012. Late Jurassic salamandroid from western Liaoning, China. Proceedings of the National Academy of Sciences 109, 5767–72.CrossRefGoogle ScholarPubMed
Hellrung, H. 2003. Gerrothorax pustuloglomeratus, ein Temnospondyle (Amphibia) mit knöcherner Branchialkammer aus dem Unteren Keuper von Kupferzell (Süddeutschland). Stuttgarter Beiträge zur Naturkunde Serie B (Geologie und Paläontologie) 330, 1130.Google Scholar
Henrici, A. C., Martens, T., Berman, D. S. & Sumida, S. S. 2011. An ostodolepid ‘microsaur’ (Lepospondyli) from the Lower Permian Tambach Formation of central Germany. Journal of Vertebrate Paleontology 31, 9971004.CrossRefGoogle Scholar
Hofker, J. 1926. Archegosaurus decheni Goldfuss. Untersuchung des Schädelbaues. Palaeontologia Hungarica 2, 109–30.Google Scholar
Hook, R. W. 1983. Colosteus scutellatus (Newberry), a primitive temnospondyl amphibian from the Middle Pennsylvanian of Linton. American Museum of Natural History Novitates 2770, 141.Google Scholar
Ivakhnenko, M. F. 1987. [Permian parareptiles of USSR.] Trudy Paleontologichesko Instituta Nauka SSSR 223, 1160. [In Russian.]Google Scholar
Janvier, P. 1996. Early vertebrates. Oxford: Clarendon Press.Google Scholar
Jarvik, E. 1954. On the visceral skeleton in Eusthenopteron with a discussion of the parasphenoid and palatoquadrate in fishes. Kungliga Svenska Vetenskapsakademiens Handlingar. Fjärde Serien, Band 5(1), 1104.Google Scholar
Jarvik, E. 1963. The composition of the intermandibular division of the head in fish and tetrapods and the diphyletic origin of the tetrapod tongue. Kungliga Svenska Vetenskapsakademiens Handlingar. Fjärde Serien, Band 9(1), 174.Google Scholar
Jarvik, E. 1980. Basic structure and evolution of vertebrates, Volume 1. London: Academic Press.Google Scholar
Jenkins, F. A. Jr., Shubin, N. H., Gatesy, S. M. & Warren, A. A. 2008. Gerrothorax pulcherrimus from the Upper Triassic Fleming Fjord Formation of East Greenland and a reassessment of head lifting in temnospondyl Feeding. Journal of Vertebrate Paleontology 28, 935–50.CrossRefGoogle Scholar
Johanson, Z. & Ahlberg, P. E. 1997. A new tristichopterid (Osteolepiformes; Sarcopterygii) from the Mandagery Sandstone (Famennian) near Canowindra, N.S.W., Australia. Transactions of the Royal Society of Edinburgh: Earth Sciences 88, 3953.CrossRefGoogle Scholar
Kanyukin, A. A. 2006. Hyobranchial skeleton and hypobranchial muscles of rhipidistians. Paleontological Journal 40, 297311.CrossRefGoogle Scholar
Klembara, J. 1995. The external gills and ornamentation of skull roof bones of the Lower Permian tetrapod Discosauriscus (Kuhn 1933) with remarks to its ontogeny. Paläontologische Zeitschrift 69, 265–81.Google Scholar
Klembara, J. & Ruta, M. 2005. The seymouriamorph tetrapod Ariekanerpeton sigalovi from the Lower Permian of Tadzhikistan. Part I: Cranial anatomy and ontogeny. Transactions of the Royal Society of Edinburgh: Earth Sciences 96, 4379.CrossRefGoogle Scholar
Lauder, G. V. & Reilly, S. M. 1994. Amphibian feeding behavior: comparative biomechanics and evolution. In Bels, M., Chardon, P. & Vandewalle, P. (eds) Biomechanics of Feeding in Vertebrates. Advances in Comparative and Environmental Physiology, Volume 18, 163–95. Berlin: Springer-Verlag.CrossRefGoogle Scholar
Lebedev, O. A. 1995. Morphology of a new osteolepidid fish from Russia. Bulletin du Muséum National d'Histoire Naturelle. 4e Série. Section C. Sciences de la Terre. Paléontologie, Géologie, Minéralogie 17, 287341.Google Scholar
Lebedev, O. A. & Coates, M. I. 1995. The postcranial skeleton of the Devonian tetrapod Tulerpeton curtum Lebedev. Zoological Journal of the Linnean Society 114, 307–48.CrossRefGoogle Scholar
Lombard, R. E. & Bolt, J. R. 1995. A new primitive tetrapod, Whatcheeria deltae, from the Lower Carboniferous of Iowa. Palaeontology 38, 471–94.Google Scholar
Long, J. A., Barwick, R. E. & Campbell, K. S. W. 1997. Osteology and functional morphology of the osteolepiform fish Gogonasus andrewsae Long, 1985, from the Upper Devonian Gogo Formation, Western Australia. Records of the Western Australian Museum 53, 189.Google Scholar
Marjanović, D. & Laurin, M. 2008. A reevaluation of the evidence supporting an unorthodox hypothesis on the origin of extant amphibians. Contributions to Zoology 77, 149–99.CrossRefGoogle Scholar
Marjanović, D. & Laurin, M. 2013. The origin(s) of extant amphibians: a review with emphasis on the “lepospondyl hypothesis”. Geodiversitas 35, 207–72.CrossRefGoogle Scholar
Miles, R. S. 1977. Dipnoan (lungfish) skulls and the relationships of the group: A study based on new species from the Devonian of Australia. Zoological Journal of the Linnean Society 61, 1328.CrossRefGoogle Scholar
Milner, A. C., Milner, A. R. & Walsh, S. A. 2009. A new specimen of Baphetes from Nỳřany, Czech Republic and the intrinsic relationships of the Baphetidae. Acta Zoologica (Stockholm) 90 (special issue), 318–34.CrossRefGoogle Scholar
Milner, A. C. & Lindsay, W. 1998. Postcranial remains of Baphetes and their bearing on the relationships of the Baphetidae (Loxommatidae). Zoological Journal of the Linnean Society 122, 211–35.CrossRefGoogle Scholar
Milner, A. R. 1982. Small temnospondyl amphibians from the Middle Pennsylvanian of Illinois. Palaeontology 25, 635–64.Google Scholar
Milner, A. R. 2007. Mordex laticeps and the base of the Trematopidae. Journal of Vertebrate Paleontology 27 (Supplement), 118A.Google Scholar
Nelson, G. J. 1969. Gill Arches and the Phylogeny of Fishes, With Notes on the Classification of Vertebrates. Bulletin of the American Museum of Natural History 141, 477552.Google Scholar
Nilsson, T. 1946. A new find of Gerrothorax rhaeticus Nilsson, a plagiosaurid from the Rhaetic of Scania. Lunds Universitets Årsskrift. N.F. 2, 42, 142.Google Scholar
Olori, J. C. 2011. The evolution of skeletal development in early tetrapods: anatomy and ontogeny of microsaurs (Lepospondyli). PhD Dissertation, Faculty of the Graduate School of the University of Texas at Austin.Google Scholar
Olson, E. C. 1979. Aspects of the biology of Trimerorhachis (Amphibia: Temnospondyli). Journal of Paleontology 53, 117.Google Scholar
Olson, E. C. & Lammers, G. E. 1976. A new brachyopoid amphibian. In Churcher, C. S. (ed.) Athlon: Essays on Palaeontology in Honor of Loris Shano Russell. Royal Ontario Museum Special Publication, 4557. Toronto: University of Toronto Press.Google Scholar
Pawley, K. 2006. The postcranial skeleton of temnospondyls (Tetrapoda: Temnospondyli). PhD Dissertation, Faculty of Sciences, Technology, and Engineering, La Trobe University, Melbourne, Victoria.Google Scholar
Reilly, S. M. & Lauder, G. V. 1988. Atavisms and the homology of hyobranchial elements in lower vertebrates. Journal of Morphology 195, 237–45.CrossRefGoogle ScholarPubMed
Romer, A. S. 1947. Review of the Labyrinthodontia. Bulletin of the Museum of Comparative Zoology Harvard College 99, 1368.Google Scholar
Romer, A. S. 1969. The cranial anatomy of the Permian amphibian Pantylus . Breviora 314, 137.Google Scholar
Rose, C. S. 2003. The developmental morphology of salamander skulls. In Heatwole, H. & Davies, M. (eds) Amphibian biology, Vol. 5. Osteology, 1686–783. Chipping Norton: Surrey Beatty and Sons.Google Scholar
Ruta, M. & Coates, M. I. 2007. Dates, nodes and character conflict: addressing the lissamphibian origin problem. Journal of Systematic Paleontology 5, 69122.CrossRefGoogle Scholar
Schoch, R. R. 2001. Can metamorphosis be recognised in Palaeozoic amphibians? Neues Jahrbuch für Geologie und Paläontologie, Abhandlungen 230, 335–67.CrossRefGoogle Scholar
Schoch, R. R. 2002. The evolution of metamorphosis in temnospondyls. Lethaia 35, 309–27.CrossRefGoogle Scholar
Schoch, R. R. 2003. Early larval ontogeny of the Permo–Carboniferous temnospondyl Sclerocephalus . Palaeontology 46, 1055–72.CrossRefGoogle Scholar
Schoch, R. R. 2006. A complete trematosaurid amphibian from the Middle Triassic of Germany. Journal of Vertebrate Paleontology 26, 2943.CrossRefGoogle Scholar
Schoch, R. R. 2008. A new stereospondyl from the German Middle Triassic, and the origin of the Metoposauridae. Zoological Journal of the Linnean Society 152, 79113.CrossRefGoogle Scholar
Schoch, R. R. 2009. Evolution of life cycles in early amphibians. Annual Review of Earth and Planetary Sciences 37, 135–62.CrossRefGoogle Scholar
Schoch, R. R. 2013. The evolution of major temnospondyl clades – an inclusive phylogenetic analysis. Journal of Systematic Palaeontology 11, 673705.CrossRefGoogle Scholar
Schoch, R. R. & Milner, A. R. 2000. Stereospondyli. In Wellnhofer, P. (ed.) Handbuch der Paläoherpetologie, Volume 3, 1220. München: Verlag Dr. Friedrich Pfeil.Google Scholar
Schoch, R. R. & Milner, A. R. 2008. The intrarelationships and evolutionary history of the temnospondyl family Branchiosauridae. Journal of Systematic Palaeontology 6, 409–31.CrossRefGoogle Scholar
Schoch, R. R. & Witzmann, F. 2009a. Osteology and relationships of the temnospondyl genus Sclerocephalus . Zoological Journal of the Linnean Society 157, 135–68.CrossRefGoogle Scholar
Schoch, R. R. & Witzmann, F. 2009b. The temnospondyl Glanochthon from the Lower Permian Meisenheim Formation of Germany. Special Papers in Palaeontology 81, 121–36.Google Scholar
Schoch, R. R. & Witzmann, F. 2011. Bystrow's Paradox: gills, fossils, and the fish-to-tetrapod transition. Acta Zoologica (Stockholm) 92, 251–65.CrossRefGoogle Scholar
Shishkin, M. A. 1973. [The morphology of the early Amphibia and some problems of lower tetrapod evolution.] Trudy Paleontologichesko Instituta Nauka SSSR 137, 1257. [In Russian.]Google Scholar
Sigurdsen, T. & Bolt, J. R. 2010. The Lower Permian amphibamid Doleserpeton (Temnospondyli: Dissorophoidea), the interrelationships of amphibamids, and the origin of modern amphibians. Journal of Vertebrate Paleontology 30, 1360–77.CrossRefGoogle Scholar
Stadtmüller, F. 1936. Kranium und Visceralskelett der Stegocephalen und Amphibien. In Bolk, L., Göppert, E., Kallius, E. & Lubosch, W. (eds) Handbuch der vergleichenden Anatomie der Wirbeltiere, Volume 4, 501698. Berlin and Wien: Urban und Schwarzenberg.Google Scholar
Skutschas, P. P. & Gubin, Y. M. 2012. A new salamander from the late Paleocene–early Eocene of Ukraine. Acta Palaeontologica Polonica 57, 135–48.CrossRefGoogle Scholar
Steen, M. C. 1937. On Acanthostoma vorax Credner. Proceedings of the Zoological Society London B107, 491500.CrossRefGoogle Scholar
Sushkin, P. 1936. Notes on the pre-Jurassic Tetrapoda from USSR. III. Dvinosaurus amalitzky, a perennibranchiate stegocephalian from the Upper Permian from North Dvina. Trudy Paleontologichesko Instituta Nauka SSSR 4, 4391.Google Scholar
Van Hoepen, E. C. N. 1915. Stegocephalia of Senekal, O. F. S. Annals of the Transvaal Museum 5, 124–49.Google Scholar
Wake, M. H. 1989. Metamorphosis of the hyobranchial apparatus in Epicrionops (Amphibia: Gymnophiona: Rhinatrematidae): replacement of bone by cartilage. Annales des Sciences Naturelles Zoologie 10, 171–82.Google Scholar
Warren, A. A. 1999. Karoo tupilakosaurid: a relict from Gondwana. Transactions of the Royal Society of Edinburgh: Earth Sciences 89(for 1998), 145–60.CrossRefGoogle Scholar
Warren, A. A. & Hutchinson, M. N. 1988. A new capitosaurid amphibian from the Early Triassic of Queensland, and the ontogeny of the capitosaur skull. Palaeontology 31, 857–76.Google Scholar
Warren, A. A. & Marsicano, C. 1998. Revision of the Brachyopidae (Temnospondyli) from the Triassic of Sydney, Carnarvon and Tasmania Basins, Australia. Alcheringa 22, 329–42.CrossRefGoogle Scholar
Warren, A. A., Rozefelds, A. C., & Bull, S. 2011. Tupilakosaur-like vertebrae in Bothriceps australis, an Australian brachyopid stereospondyl. Journal of Vertebrate Paleontology 31, 738–53.CrossRefGoogle Scholar
Watson, D. M. S. 1956. The brachyopid labyrinthodonts. Bulletin of the British Museum (Natural History). Geology Series 2, 315–92.Google Scholar
Wellstead, C. F. 1991. Taxonomic revision of the Lysorophia, Permo-Carboniferous lepospondyl amphibians. Bulletin of the American Museum of Natural History 209, 190.Google Scholar
Werneburg, R. 1991. Die Branchiosaurier aus dem Unterrotliegend des Döhlener Beckens bei Dresden. Veröffentlichungen Naturhistorisches Museum Schleusingen 6, 7599.Google Scholar
Werneburg, R. 1997. Der Eryopide Onchiodon (Amphibia) aus dem Rotliegend des Beckens von Autun (Frankreich). Freiberger Forschungshefte C 466, 167–81.Google Scholar
Werneburg, R. 1998. Ein larvaler Acanthostomatops (Zatrachydidae, Amphibia) aus der Niederhäslich-Formation (Unter-Perm) des Döhlen-Beckens. Veröffentlichungen des Museums für Naturkunde Chemnitz 21, 4952.Google Scholar
Werneburg, R. 2007. Der ,,Manebacher Saurier“ – ein neuer großer Eryopide (Onchiodon) aus dem Rotliegend (Unter-Perm) des Thüringer Waldes. Veröffentlichungen Naturhistorisches Museum Schleusingen 22, 340.Google Scholar
Witzmann, F. 2004. The external gills of Palaeozoic amphibians. Neues Jahrbuch für Geologie und Paläontologie, Abhandlungen 232, 375401.Google Scholar
Witzmann, F. 2005. Hyobranchial and postcranial ontogeny of the temnospondyl Onchiodon labyrinthicus (Geinitz, 1861) from Niederhäslich (Döhlen Basin, Autunian, Saxony). Paläontologische Zeitschrift 79, 479–92.CrossRefGoogle Scholar
Witzmann, F. 2006. Cranial morphology and ontogeny of the Permo–Carboniferous temnospondyl Archegosaurus decheni Goldfuss, 1847 from the Saar–Nahe Basin, Germany. Transactions of the Royal Society of Edinburgh, Earth Sciences 96(for 2005), 131–62.CrossRefGoogle Scholar
Witzmann, F. & Schoch, R. R. 2006. Skeletal development of the temnospondyl Acanthostomatops vorax from the Lower Permian Döhlen Basin of Saxony. Transactions of the Royal Society of Edinburgh, Earth Sciences 96(for 2005), 365–85.CrossRefGoogle Scholar
Worthington, R. D. & Wake, D. B. 1971. Larval morphology and ontogeny of the ambystomatid salamander, Rhyacotriton olympicus . The American Midland Naturalist 85, 349–65.CrossRefGoogle Scholar
Yates, A. M. 1999. The Lapillopsidae: a new family of small temnospondyls from the early Triassic of Australia. Journal of Vertebrate Paleontology 19, 302–20.CrossRefGoogle Scholar

Altmetric attention score


Full text views

Full text views reflects PDF downloads, PDFs sent to Google Drive, Dropbox and Kindle and HTML full text views.

Total number of HTML views: 7
Total number of PDF views: 105 *
View data table for this chart

* Views captured on Cambridge Core between September 2016 - 2nd December 2020. This data will be updated every 24 hours.

Hostname: page-component-79f79cbf67-xsjvs Total loading time: 8.719 Render date: 2020-12-02T07:21:08.522Z Query parameters: { "hasAccess": "0", "openAccess": "0", "isLogged": "0", "lang": "en" } Feature Flags last update: Wed Dec 02 2020 07:06:18 GMT+0000 (Coordinated Universal Time) Feature Flags: { "metrics": true, "metricsAbstractViews": false, "peerReview": true, "crossMark": true, "comments": true, "relatedCommentaries": true, "subject": true, "clr": false, "languageSwitch": true }

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Phylogenetic patterns of character evolution in the hyobranchial apparatus of early tetrapods
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Phylogenetic patterns of character evolution in the hyobranchial apparatus of early tetrapods
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Phylogenetic patterns of character evolution in the hyobranchial apparatus of early tetrapods
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *