Skip to main content Accessibility help
×
Home
Hostname: page-component-559fc8cf4f-x5fd4 Total loading time: 1.044 Render date: 2021-03-08T07:26:01.439Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": false, "newCiteModal": false, "newCitedByModal": true }

A new tetrapod from Romer's Gap reveals an early adaptation for walking

Published online by Cambridge University Press:  03 August 2018

Abstract

A new early tetrapod, Mesanerpeton woodi gen. et sp. nov., collected by Stan Wood from the Ballagan Formation, Tournaisian CM palynozone, at Willie's Hole, Scottish Borders, is described. It includes vertebrae like those of Crassigyrinus, with poorly developed neural arches, a well ossified ulna with a large olecranon, and a humerus that is structurally intermediate between the pleisiomorphic condition of Devonian taxa and that of all later forms. A comparative analysis of this new material and other tetrapodomorph humeri revealed how an increase in humeral torsion transformed the course of the brachial artery and median nerve through the bone, from an entirely ventral path to one in which the blood vessel and nerve passed through the entepicondyle from the dorsal to the ventral surface. Increasing humeral torsion is suggested to improve walking in early tetrapods by potentially contributing to an increase in stride length, and is one of a number of changes to limb morphology during the Early Carboniferous that led to the development of terrestrial locomotion.

Type
Articles
Copyright
Copyright © The Royal Society of Edinburgh 2018 

Access options

Get access to the full version of this content by using one of the access options below.

References

Ahlberg, P. E. 2011. Humeral homology and the origin of the tetrapod elbow: a reinterpretation of the enigmatic specimens ANSP 21350 and GSM 104536. Special Papers in Palaeontology 86, 1729.Google Scholar
Anderson, J. S., Smithson, T. R., Mansky, C. F., Meyer, T. & Clack, J. A. 2015. A diverse tetrapod fauna at the base of Romer's Gap. PlosOne DOI:10.1371/journal.pone.0125446.Google Scholar
Andrews, S. M. & Westoll, T. S. 1970. The postcranial skeleton of Eusthenopteron foordi Whiteaves. Transactions of the Royal Society of Edinburgh 68, 207329.CrossRefGoogle Scholar
Bishop, P. J. 2014. The humerus of Ossinodus pueri, a stem tetrapod from the Carboniferous of Gondwana, and the early evolution of the tetrapod forelimb. Alcheringa 38, 209238.CrossRefGoogle Scholar
Callier, V., Clack, J. A. & Ahlberg, P. E. 2009. Contrasting developmental trajectories in the earliest known tetrapod forelimbs. Science 324, 364367.CrossRefGoogle ScholarPubMed
Clack, J. A. 2012. Gaining Ground: The Origin and Evolution of Tetrapods 2nd Edition. Bloomington, Indiana: Indiana University Press. 523 pp.Google Scholar
Clack, J. A. 2016. Land vertebrates, the origin and evolution of. In Kilman, R. M. (ed.) Encyclopedia of Evolutionary Biology, vol. 2, 296304. Oxford: Academic Press. 2132 pp.CrossRefGoogle Scholar
Clack, J. A., Bennett, C. E., Carpenter, D. K., Davies, S. J., Fraser, N. C., Kearsey, T. I., Marshall, J. E. A., Millward, D., Otoo, B. K. A., Reeves, E. J., Ross, A. J., Ruta, M., Smithson, K. Z., Smithson, T. R. & Walsh, S. A. 2016. Phylogenetic and environmental diversity revealed for Tournaisian tetrapods. Nature Ecology and Evolution 1. doi: 10.1038/s41559-016-0002Google Scholar
ClackJ, A. J, A. & Finney, S. M. 2005. Pederpes finneyae, an articulated tetrapod from the Tournaisian of western Scotland. Journal of Systematic. Palaeontology 2, 311346.CrossRefGoogle Scholar
Coates, M. I. 1996. The Devonian tetrapod Acanthostega gunnari Jarvik: postcranial anatomy, basal tetrapod relationships and patterns of skeletal evolution. Transactions of the Royal Society of Edinburgh: Earth Sciences 87, 363421.CrossRefGoogle Scholar
Coates, M. I. & Clack, J. A. 1995. Romer's Gap – tetrapod origins and terrestriality. Bulletin du Muséum national d'histoire naturelle 17, 373388.Google Scholar
Evans, F. G. & Krahl, V. E. 1945. The torsion of the humerus: a phylogenetic survey from fish to man. American Journal of Anatomy 76, 303337.CrossRefGoogle Scholar
Godfrey, S. J. 1989. The postcranial skeletal anatomy of the Carboniferous tetrapod Greererpeton burkemorani. Philosophical Transactions of the Royal Society, London, Series B 323, 75133.Google Scholar
Gregory, W. K. 1949. The humerus from fish to man. American Museum Novitates 1400, 154.Google Scholar
Holland, T. 2013. Pectoral girdle and fin anatomy of Gogonasus andrewsae Long 1985: implications for tetrapodamorph limb evolution. Journal of Morphology 274, 147164.CrossRefGoogle ScholarPubMed
Holmes, R. 1977. The osteology and musculature of the pectoral limb of small captorhinids. Journal of Morphology 152, 101140.CrossRefGoogle ScholarPubMed
Holmes, R. 1980. Proterogyrinus scheeli and the early evolution of the labyrinthodont pectoral limb. In Panchen, A. L. (ed.) The Terrestrial Environment and the Origin of Land Vertebrates, 351376. London: Academic Press. 633 pp.Google Scholar
Hopson, J. A. 2015. Fossils, trackways and transitions in locomotion: a case study of Dimetrodon. In Dial, K. P., Shubin, N. H. & Brainerd, E. L. (eds) Great Transformations in Vertebrate Evolution, 125141. Chicago: University of Chicago Press. 424 pp.Google Scholar
Jarvik, E. 1996. The Devonian tetrapod Ichthyostega. Fossils & Strata 40, 1–206.Google Scholar
Jenkins, F. A. 1973. The functional anatomy and evolution of the mammalian humero-ulnar articulation. American Journal of Anatomy 137, 281297.CrossRefGoogle ScholarPubMed
Landry, S. O. 1958. The function of the entepicondylar foramen in mammals. American Midland Naturalist 60, 100112.CrossRefGoogle Scholar
Lebedev, O. A. & Coates, M. I. 1995. The postcranial skeleton of the Devonian tetrapod Tulerpeton curtum Lebedev. Zoological Journal of the Linnean Society 114, 307348.CrossRefGoogle Scholar
Lombard, R. E. & Bolt, J. R. 1995. A new primitive tetrapod Whatcheeria deltae from the Lower Carboniferous of Iowa. Palaeontology 38, 471494.Google Scholar
Mansky, C. F. & Lucas, S. G. 2013. Romer's Gap revisited: continental assemblages and ichno-assemblages from the basal Carboniferous of Blue Beach, Nova Scotia, Canada. Bulletin of the New Mexico Museum of Natural History 60, 244273.Google Scholar
Milner, A. C. & Lindsey, W. 1998. Postcranial remains of Baphetes and their bearing on the relationships of Baphetidae (= Loxommatidae). Zoological Journal of the Linnean Society 122, 211235.CrossRefGoogle Scholar
Miner, R. W. 1925. The pectoral limb of Eryops and other primitive tetrapods. Bulletin of the American Museum of Natural History 51, 145312.Google Scholar
Nyakatura, J. A., Andrada, E., Curth, S. & Fischer, M. S. 2013. Bridging Romer's Gap: limb mechanics of an extant belly-dragging lizard inform debate on tetrapod locomotion during the early Carboniferous. Evolutionary Biology. DOI: 10.1007/s11692-013-9266-z.Google Scholar
Panchen, A. L. 1985. On the amphibian Crassigyrinus scoticus Watson from the Carboniferous of Scotland. Philosophical Transactions of the Royal Society, London, Series B 309, 461568.Google Scholar
Panchen, A. L. & Smithson, T. R. 1990. The pelvic girdle and hindlimb of Crassigyrinus scoticus (Lydekker) from the Scottish Carboniferous and the origin of the tetrapod pelvic skeleton. Transactions of the Royal Society of Edinburgh: Earth Sciences 81, 3144.CrossRefGoogle Scholar
Paton, R. L., Smithson, T. R. & Clack, J. A. 1999. An amniote-like skeleton from the Early Carboniferous of Scotland. Nature 398, 508513.CrossRefGoogle Scholar
Pawley, K. & Warren, A. 2006. The appendicular skeleton of Eryops megacephalus Cope, 1877 (Temnospondyli: Eryopoidea) from the Lower Permian of North America. Journal of Paleontology 80, 561580.CrossRefGoogle Scholar
Pierce, S. E., Clack, J. A. & Hutchinson, J. R. 2012. Three-dimensional limb joint mobility in the early tetrapod Ichthyostega. Nature 486, 523526.CrossRefGoogle ScholarPubMed
Pierce, S. E., Hutchinson, J. R. & Clack, J. A. 2013. Historical perspectives on the evolution of tetrapodomorph movement. Integrative and Comparative Biology. DOI:10.1093/icb/ict022.CrossRefGoogle ScholarPubMed
Romer, A. S. 1922. The locomotor apparatus of certain primitive and mammal-like reptiles. Bulletin of the American Museum of Natural History 46, 517606.Google Scholar
Romer, A. S. 1956. Osteology of the reptiles. Chicago, Illinois: University of Chicago Press. 772 pp.Google Scholar
Romer, A. S. 1957. The appendicular skeleton on the Permian embolomerous amphibian Archeria. Contributions to the Museum of Geology, University of Michigan 13, 103159.Google Scholar
Romer, A. S. & Price, L. I. 1940. Review of the Pelycosauria. Geological Society of America Special Papers 28, 1–538.CrossRefGoogle Scholar
Ruta, M. & Wills, M. A. 2016. Comparable disparity in the appendicular skeleton across the fish-tetrapod transition, and the morphological gap between fish and tetrapod postcrania. Palaeontology 59, 249267.CrossRefGoogle Scholar
Saber, A. S. 2013. Some morphological observations on the thoracic limb bones of the hairy-nosed wombat (Lasiorhinus latifornis Owen). Journal of Veterinary Anatomy 6, 93109.CrossRefGoogle Scholar
Shubin, N. H., Daeschler, E. B. & Coates, M. I. 2004. The early evolution of the tetrapod humerus. Science 304, 9093.CrossRefGoogle ScholarPubMed
Shubin, N. H., Daeschler, E. B. & Jenkins, F. A. 2006. The pectoral fin of Tiktaalik roseae and the origin of the tetrapod limb. Nature 440, 764771.CrossRefGoogle ScholarPubMed
Shubin, N. H. & Alberch, P. 1986. A morphogenic approach to the origin and basic organisation of the tetrapod limb. Evolutionary Biology 20, 319387.Google Scholar
Smithson, T. R. 1985. The morphology and relationships of the Carboniferous amphibian Eoherpeton watsoni Panchen. Zoological Journal of the Linnean Society 85, 317410.CrossRefGoogle Scholar
Smithson, T. R., Carroll, R. L., Panchen, A. L. & Andrews, S. M. 1994. Westlothiana lizziae from the Viséan of East Kirkton, West Lothian, Scotland. Transactions of the Royal Society of Edinburgh: Earth Sciences 84 (for 1993), 417431.Google Scholar
Smithson, T. R., Wood, S. P., Marshall, J. E. A. & Clack, J. A. 2012. Earliest Carboniferous tetrapod and arthropod faunas from Scotland populate Romer's Gap. Proceedings of the National Academy of Science USA 109, 45324537.CrossRefGoogle ScholarPubMed
Smithson, T. R. & Clack, J. A. 2013. Tetrapod appendicular skeletal elements from the Early Carboniferous of Scotland. Comptes Rendus Palevol 12, 405417.CrossRefGoogle Scholar
Wagner, G. P. & Larsson, H. C. E. 2007. Fins and limbs in the study of evolutionary novelties. In Hall, B. K. (ed.) Fins into Limbs, 4961. Chicago, Illinois: University of Chicago Press. 344 pp.Google Scholar
Watson, D. M. S. 1917. The evolution of the tetrapod shoulder girdle and forelimb. Journal of Anatomy 52, 163.Google Scholar

Altmetric attention score

Full text views

Full text views reflects PDF downloads, PDFs sent to Google Drive, Dropbox and Kindle and HTML full text views.

Total number of HTML views: 32
Total number of PDF views: 187 *
View data table for this chart

* Views captured on Cambridge Core between 03rd August 2018 - 8th March 2021. This data will be updated every 24 hours.

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

A new tetrapod from Romer's Gap reveals an early adaptation for walking
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

A new tetrapod from Romer's Gap reveals an early adaptation for walking
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

A new tetrapod from Romer's Gap reveals an early adaptation for walking
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *