Hostname: page-component-7c8c6479df-ws8qp Total loading time: 0 Render date: 2024-03-19T04:23:02.866Z Has data issue: false hasContentIssue false

Reported early family environment covaries with menarcheal age as a function of polymorphic variation in estrogen receptor-α

Published online by Cambridge University Press:  24 January 2011

Stephen B. Manuck*
Affiliation:
University of Pittsburgh
Anna E. Craig
Affiliation:
University of Pittsburgh
Janine D. Flory
Affiliation:
Queens College
Indrani Halder
Affiliation:
University of Pittsburgh
Robert E. Ferrell
Affiliation:
University of Pittsburgh
*
Address correspondence and reprint requests to: Stephen B. Manuck, Behavioral Physiology Laboratory, University of Pittsburgh, 506 OEH, 4015 O'Hara Street, Pittsburgh, PA 15260; E-mail: manuck@pitt.edu.

Abstract

Age at menarche, a sentinel index of pubertal maturation, was examined in relation to early family relationships (conflict, cohesion) and polymorphic variation in the gene encoding estrogen receptor-α (ESR1) in a midlife sample of 455 European American women. Consistent with prior literature, women who reported being raised in families characterized by close interpersonal relationships and little conflict tended to reach menarche at a later age than participants reared in families lacking cohesion and prone to discord. Moreover, this association was moderated by ESR1 variation, such that quality of the family environment covaried positively with menarcheal age among participants homozygous for minor alleles of the two ESR1 polymorphisms studied here (rs9304799, rs2234693), but not among women of other ESR1 genotypes. In addition, (a) family relationship variables were unrelated to ESR1 variation, and (b) genotype-dependent effects of childhood environment on age at menarche could not be accounted for by personality traits elsewhere shown to explain heritable variation in reported family conflict and cohesion. These findings are consistent with theories of differential susceptibility to environmental influence, as well as the more specific hypothesis (by Belsky) that girls differ genetically in their sensitivity to rearing effects on pubertal maturation.

Type
Special Section Articles
Copyright
Copyright © Cambridge University Press 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adair, L. S., & Grodon-Larsen, P. (2001). Maturational timing and overweight prevalence in US adolescent girls. American Journal of Public Health, 91, 642644.Google Scholar
Anderson, S. E., Dallal, G. E., & Must, A. (2003). Relative weight and race influence average age at menarche: Results from two nationally representative surveys of US girls studied 25 years apart. Pediatrics, 111, 844850.Google Scholar
Apter, D., & Vihko, R. (1983). Early menarche, a risk factor for breast cancer, indicates early onset of ovulatory cycles. Journal of Clinical Endocrinology and Metabolism, 57, 8286.Google Scholar
Attie, I., & Brooks-Gunn, J. (1989). Development of eating problems in adolescent girls. Developmental Psychology, 25, 7079.Google Scholar
Belsky, J. (1997). Variation in susceptibility to rearing influences: An evolutionary argument. Psychological Inquiry, 8, 182186.Google Scholar
Belsky, J. (2000). Conditional and alternative reproductive stragegies: Individual differences in susceptibility to rearing experience. In Rodgers, J. L., Rowe, D. C., & Miller, W. B. (Eds.), Genetic influences on human fertility and sexuality: Theoretical and empirical contributions from biological and behavioral sciences (pp. 127146). Boston: Kluwer Academic.Google Scholar
Belsky, J. (2005). Differential susceptibility to rearing influence: An evolutionary hypothesis and some evidence. In Ellis, B. J. & Bjorklund, D. F. (Eds.), The origins of the social mind (pp. 139163). New York: Guilford Press.Google Scholar
Belsky, J., Bakermans-Kranenburg, M. J., & van IJzendoorn, M. H. (2007). For better and for worse: Differential susceptibility to environmental influences. Current Directions in Psychological Science, 16, 300304.Google Scholar
Belsky, J., & Pluess, M. (2009). Beyond diathesis stress: Differential susceptibility to environmental influences. Psychological Bulletin, 135, 885908.Google Scholar
Belsky, J., Steinberg, L., & Draper, P. (1991). Childhood experience, interpersonal development, and reproductive strategy: An evolutionary theory of socialization. Child Development, 62, 647670.Google Scholar
Belsky, J., Steinberg, L. D., Houts, R. M., Friedman, S. L., DeHart, G., Cauffman, E., et al. (2007). Family rearing antecedents of pubertal timing. Child Development, 78, 13021321.Google Scholar
Bergsten-Brucefors, A. (1976). A note on the accuracy of recalled age at menarche. Annals of Human Biology, 3, 7173.Google Scholar
Bernstein, L. (2002). Epidemiology of endocrine-related risk factors for breast cancer. Journal of Mammary Gland Biology and Neoplasia, 7, 315.Google Scholar
Bleil, M. E., Gianaros, P. J., Jennings, J. R., Flory, J. D., & Manuck, S. B. (2008). Trait negative affect: toward an intergrated model of understanding psychological risk for impairment in cardiac autonomic function. Psychosomatic Medicine, 70, 328337.Google Scholar
Boot, A. M., van Der Sluis, I. M., de Muinck Keizer-Schrama, S. M. P .F., van Meurs, J. B. J., Krenning, E. P., et al. (2004). Estrogen receptor α gene polymorphisms and bone mineral density in health children and young adults. Calcified Tissue International, 74, 495500.Google Scholar
Borgerhoff Mulder, M. (1988). Kipsigis bridewalth payments. In Betzig, L., Borgerhoff Mulder, M., & Turke, P. (Eds.), Human reproductive behavior (pp. 6582). New York: Cambridge University Press.Google Scholar
Borgerhoff Mulder, M. (1989). Menarche, menopause and reproduction in the Kipsigis of Kenya. Journal of Biosocial Science, 21, 179192.Google Scholar
Boyapati, S. M., Shu, X. O., Ruan, Z. X., Cai, Q., Smith, J. R., Wen, W., et al. (2005). Polymorphisms in ER-α gene interact with estrogen receptor status in breast cancer survival. Clinical Cancer Research, 11, 10931098.Google Scholar
Boyce, W. T., & Ellis, B. J. (2005). Biological sensitivity to context: I. An evolutionary-developmental theory of the origins and functions of stress reactivity. Development and Psychopathology, 17, 271301.Google Scholar
Brooks-Gunn, J., & Warren, M. P. (1988). Mother–daughter differences in menarcheal age in adolescent girls attending national dance company schools and non-dancers. Annals of Human Biology, 15, 3544.Google Scholar
Cai, Q., Shu, X. O., Jin, F., Dai, Q., Wen, W., Cheng, J.-R., et al. (2003). Genetic polymorphisms in the estrogen receptor α gene and risk of breast cancer: Results from the Shangai Breast Cancer Study. Cancer Epidemiology, Biomarkers & Prevention, 12, 853859.Google Scholar
Campbell, B. C., & Udry, J. R. (1995). Stress and age at menarche of mothers and daughters. Journal of Biosocial Science, 27, 127134.Google Scholar
Caspi, A., McClay, J., Moffitt, T. E., Mill, J., & Martin, J., Craig, I. W., et al. (2002). Role of genotype in the cycle of violence in maltreated children. Science, 297, 851854.Google Scholar
Caspi, A., & Moffitt, T. E. (1991). Individual differences are accentuated during periods of social change: The sample case of girls at puberty. Journal of Personality and Social Psychology, 61, 157168.Google Scholar
Caspi, A., Sugden, K., Moffitt, T. E., Taylor, A., Craig, I. W., Harrington, H. et al. (2003). Influence of life stress on depression: Moderation by a polymorphism in the 5-HTT gene. Science, 301, 386389.Google Scholar
Caspi, A., Williams, B., Kim-Cohen, J., Craig, I. W., Milne, B. J., Poulton, R., et al. (2007). Moderationof breastfeeding effects on IQ by genetic variation in fatty acid metabolism. Proceedings of the National Academy of Science of the United States of America, 104, 1886018865.Google Scholar
Castagnoli, A., Maestri, I., Bernardi, F., & Del Senno, L. (1987). PvuII inside the human estrogen receptor gene. Nucleic Acids Research, 15, 866.Google Scholar
Chisholm, J. S. (1999). Death, hope, and sex: Steps to an evolutionary ecology of mind and morality. New York: Cambridge University Press.Google Scholar
Chisholm, J. S., & Burbank, V. K. (2001). Evolution and inequality. International Epidemiological Association, 30, 206211.Google Scholar
Cicchetti, D., Rogosch, F. A., & Sturge-Apple, M. L. (2007). Interactions of child maltreatment and serotonin transporter and monoamine oxidase A polymorphisms: Depressive symptomatology among adolescents from low socioeconomic status backgrounds. Development and Psychopathology, 19, 11611180.Google Scholar
Comings, D. E., Muhleman, D., Johnson, J. P., & MacMurray, J. P. (2002). Parent–daughter transmission of the androgen receptor gene as an explanation of the effect of father absence on age of menarche. Child Development, 73, 10461051.Google Scholar
Cooper, G. S., Ephross, S. A., Weinberg, C. R., Baird, D. D., Whelan, E. A., & Sandler, D. P. (1999). Menstrual and reproductive risk factors for ischemic heart disease. Epidemiology, 10, 255259.Google Scholar
Damon, A., Damon, S. T., Reed, R. B., & Valadian, I. (1969). Age at menarche of mothers and daughters, with a note on accuracy of recall. Human Biology, 41, 161175.Google Scholar
Deardorff, J., Gonzales, N. A., Christopher, F. S., Roosa, M. W., & Millsap, R. E. (2005). Early puberty and adolescent pregnancy: The influence of alcohol use. Pediatrics, 116, 14511456.Google Scholar
Deater-Deckard, K., Fulker, D. W., & Plomin, R. (1999). A genetic study of the family environment in the transition to early adolescence. Journal of Child Psychology and Psychiatry, 40, 769775.Google Scholar
DiVall, S. A., & Radovick, S. (2008). Pubertal development and menarche. Annals of the New York Academy of Sciences, 1135, 1928.Google Scholar
DiVall, S. A., & Radovick, S. (2009). Endocrinology of female puberty. Current Opinion in Endocrinology, Diabetes and Obesity, 16, 14.Google Scholar
Doughty, D., & Rodgers, J. L. (2000). Behavior genetic modeling of menarche in U.S. females. In Rodgers, J. L., Rowe, D. C., & Miller, W. B. (Eds.), Genetic influences on human fertility and sexuality (pp. 169182). Boston: Kluwer Academic.Google Scholar
Dunbar, J., Sheeder, J., Lezotte, D., Dabelea, D., & Stevens-Siimon, C. (2008). Age at menarche and first pregnancy among psychosically at-risk adolescents. American Journal of Public Health, 98, 18221824.Google Scholar
Ellis, B. J. (2004). Timing of pubertal maturation in girls: An integrated life history approach. Psychological Bulletin, 130, 920958.Google Scholar
Ellis, B. J. (2005). Determinants of pubertal timing: An evolutionary developmental approach. In Ellis, B. J. & Bjorklund, D. F. (Eds.), The origins of the social mind (pp. 164188). New York: Guilford Press.Google Scholar
Ellis, B. J., Boyce, W. T., Belsky, J., Bakermans-Kranenburg, M. J., & van IJzendoorn, M. H. (2011). Differential susceptibility to the environment: An evolutionary–neurodevelopmental theory. Development and Psychopathology, 23, 728.Google Scholar
Ellis, B. J., & Essex, M. J. (2007). Family environments, adrenarche, and sexual maturation: A longitudinal test of a life history model. Child Development, 78, 17991817.Google Scholar
Ellis, B. J., & Garber, J. (2000). Psychosocial antecedents of variation in girls' pubertal timing: Maternal depression, stepfather presences, and marital and family stress. Child Development, 71, 485501.Google Scholar
Ellis, B. J., Jackson, J. J., & Boyce, W. T. (2006). The stress response systems: Universality and adaptive individual differences. Developmental Review, 26, 175212.Google Scholar
Ellis, B. J., McFadyen-Ketchum, S., Dodge, K. A., Pettit, G. S., & Bates, J. E. (1999). Quality of early family relationships and individual differences in the timing of pubertal maturation in girls: A longitudinal test of an evolutionary model. Journal of Personality and Social Psychology, 77, 387401.Google Scholar
Ellis, B. J., Shirtcliff, E. A., Boyce, W. T., Deardorff, J., & Essex, M. J. (2011). Quality of early family relationships and the timing and tempo of puberty: Effects depend on biological sensitivity to context. Development and Psychopathology, 23, 8599.Google Scholar
Falush, D., Stephens, M., & Prichard, J. K. (2003). Inference of population structure using multilocus genotype data: Linked loci and correlated allele frequencies. Genetics, 164, 15671587.Google Scholar
Ge, X., Conger, R. D., & Elder, G. H. (1996). Coming of age too early: Pubertal influences on girls' vulnerability to psychological distress. Child Development, 67, 33863400.Google Scholar
Golub, M. S., Collman, G. W., Foster, P. M. D., Kimmel, C. A., Rajpert-De Meyts, E., Reiter, E. O., et al. (2008). Public health implications of altered puberty timing. Pediatrics, 121, S218S230.Google Scholar
Gorai, I., Tanake, K., Inada, M.., Morinaga, H., Uchiyama, , Kikuchi, R., et al. (2003). Estrogen-metabolizing gene polymorphisms, but not estrogen receptor-α gene polymorphisms, are associated with the onset of menarche in health postmenopausal Japanese women. Journal of Clinical Endocrinology and Metabolism, 88, 799803.Google Scholar
Graber, J. A., Brooks-Gunn, J., & Warren, M. P. (1995). The antecedents of menarcheal age: Heredity, family environment, and stressful life events. Child Development, 66, 346359.Google Scholar
Graber, J. A., Lewinsohn, P. M., Seeley, J. R., & Brooks-Gunn, J. (1997). Is psychopathology associated with the timing of pubertal development? Journal of the American Academy of Child & Adolescent Psychiatry, 36, 17681776.Google Scholar
Graber, J. A., Seeley, J. R., Brooks-Gunn, J., & Lewinsohn, P. M. (2004). Is pubertal timing associated with psychopathology in young adulthood? Journal of the American Academy of Child & Adolescent Psychiatry, 43, 718726.Google Scholar
Halder, I., Marsland, A. L., Cheong, J., Muldoon, M. F., Ferrell, R. E., & Manuck, S. B. (2010). Polymorphisms in the CRP gene moderate an association between depressive symptoms and circulating levels of C-reactive protein. Brain, Behavior, and Immunity, 24, 160167.Google Scholar
Halder, I., Muldoon, M. F., Ferrell, R. E., & Manuck, S. B. (2007). Serotonin receptor 2A (HTR2A) gene polymorphisms are associated with blood pressure, central adiposity, and the metabolic syndrome. Metabolic Syndrome and Related Disorders, 5, 323330.Google Scholar
Hall, M. H., Muldoon, M. F., Jennings, J. R., Buysse, D. J., flory, J. D., & Manuck, S. B. (2008). Self-reported sleep duration is associated with the metabolic syndrome in midlife adults. Sleep, 31, 635643.Google Scholar
Hayward, C., Killen, J. D., Wilson, D. M., Hammer, L. D., Litt, I. F., Kraemer, H. C., et al. (1997). Psychiatric risk associated with early puberty in adolescent girls. Journal of the American Academy of Child & Adolescent Psychiatry, 36, 255262.Google Scholar
Herrington, D. M., Howard, T. D., Brosnihan, B., McDonnell, D. P., Li, X., Hawkins, G. A., et al. (2002). Common estrogen receptor polymorphism augments effects of hormone replacement therapy on E-selectin but not C-reactive protein. Circulation, 105, 18791882.Google Scholar
Hoier, S. (2003). Father absence and age at menarche. Human Nature, 14, 209233.Google Scholar
Hsieh, C.-C., Trichopoulos, D., Katsouyanni, K., & Yuasa, S. (1990). Age at menarche, age at menopause, height and obesity as risk factors for breast cancer: Associations and interactions in an international case–control study. International Journal of Cancer, 46, 796800.Google Scholar
Jaana, R., Kaltiala-Heino, R., Loivisto, A., & Rantanen, P. (2003). Puberty, sexual development and eating disorders in adolescent outpatients. European Child and Adolescent Psychiatry, 12, 214220.Google Scholar
Jacobsen, B. K., Oda, K., Knutsen, S. F., & Fraser, G. E. (2009). Age at menarche, total mortality and mortality from ischaemic heart disease and stroke: the Adventist Health Study, 1976–88. International Journal of Epidemiology, 38, 245252.Google Scholar
Jacobson, K. C., & Rowe, D. C. (1999). Genetic and environmental influences on the relationships between family connectedness, school connectedness, and adolescent depressed mood: Sex differences. Developmental Psychology, 35, 926939.Google Scholar
Jang, K. L., Vernon, P. A., Liveley, W. J., Stein, M. B., & Wolf, H. (2001). Intra- and extra-familial influences on alcohol and drug misuse: A twin study of gene–environment correlation. Addiction, 96, 13071318.Google Scholar
Jorm, A. F., Christensen, Rodgers, B., Jacomb, P. A., & Easteal, S. (2004). Association of adverse childhood experiences, age of menarche, and adult reproductive behavior: Does the androgen receptor gene play a role? American Journal of Medical Genetics, 125B, 105111.Google Scholar
Kaltiala-Heino, R., Kosunen, E., & Rimpela, M. (2003). Pubertal timing, sexual behavior and self-reported depression in middle adolescence. Journal of Adolescence, 26, 531545.Google Scholar
Kaltiala-Heino, R., Marttunen, M., Rantanen, P., & Rimpela, M. (2003). Early puberty is associated with mental health problems in middle adolescence. Social Science and Medicine, 57, 10551064.Google Scholar
Kaltiala-Heino, R., Rimpel, M., Rissanen, A., & Rentanen, P. (2001). Early puberty and early sexual activity are associated with bulimic-type eating pathology in middle adolescence. Journal of Adolescent Health, 28, 346352.Google Scholar
Kaprio, J., Rimpela, A., Winter, T., Viken, R. J., Rimpela, M., & Rose, R. J. (1995). Common genetic influences on BMI and age at menarche. Human Biology, 67, 739753.Google Scholar
Kardia, S. R., Chu, J., & Sowers, M. R. (2006). Characterizing variation in sex steroid hormone pathway genes in women of 4 races/ethnicities: The Study of Women's Health Across the Nation (SWAN). American Journal of Medicine, 199, S3S15.Google Scholar
Kendler, K. S., & Baker, J. H. (2007). Genetic influences on measures of the environment: A systematic review. Psychological Medicine, 37, 615626.Google Scholar
Kim, K., & Smith, P. K. (1998). Retrospective survey of parental marital relations and child reproductive development. International Journal of Behavioral Development, 22, 729751.Google Scholar
Kim, K., Smith, P. K., & Palermiti, A.-L. (1997). Conflict I childhood and reproductive development. Evolution and Human Behavior, 18, 109142.Google Scholar
Kirk, K. M., Blomberg, S. P., Duffy, D. L., Health, A. C., Owens, I. P. F., & Martin, N. G. (2001). Natural selection and quantitative genetics of life-history traits in western women: A twin study. Evolution, 55, 423435.Google Scholar
Koprowski, C., Coates, R. J., & Bernstein, L. (2001). Ability of young women to recall past body size and age at menarche. Obesity Research, 9, 478485.Google Scholar
Kramer, K. L. (2008). Early sexual maturity among Pume foragers of Venezuela: Fitness implications of teen motherhood. American Journal of Physical Anthropology, 136, 338350.Google Scholar
Krueger, R. F., Markon, K. E., & Bouchard, T. J. (2003). The extended genotype: The heritability of personality accounts for the heritability of recalled family environments in twins reared apart. Journal of Personality, 71, 809833.Google Scholar
Kunnas, T. A., Laipala, P., Pentilla, A., Lehtmaki, T., & Karhunen, P. J. (2000). Association of polymorphism of human α oestrogen receptor gene with coronary artery disease in men: A necropsy study. British Medical Journal, 321, 273274.Google Scholar
Lakshman, R., Forouhi, N. G., Sharp, S. J., Luben, R., Bingham, S. A., Khaw, K.-T., et al. (2009). Early age at menarche associated with cardiovascular disease and mortality. Journal of Clinical Endocrinology and Metabolism, 94, 49535960.Google Scholar
Lam, T. H., Shi, H. J., Ho, L. M., Stewart, S. M., & Fan, S. (2002). Timing of pubertal maturation and heterosexual behavior among Hong Kong Chinese adolescents. Archives of Sexual Behavior, 31, 359366.Google Scholar
Lassek, W. D., & Gaulin, S. J. (2007). Menarche Is related to fat distribution. American Journal of Physical Anthropology, 133, 11471151.Google Scholar
Lehtimaki, T., Kunnas, T. W., Mattila, K. M., Perola, M., Penttila, A., Koivula, T., et al. (2002). Coronary artery wall atherosclerosis in relation to the estrogen receptor 1 gene polymorphism: An autopsy study. Journal of Molecular Medicine, 80, 176180.Google Scholar
Lipson, S. F. (2001). Metabolism, maturation, and ovarian function. In Ellison, P. T. (Ed.), Reproductive ecology and human evolution (pp. 235248). New York: Aldine.Google Scholar
Livson, N., & McNeill, D. (1962). The accuracy of recalled age at menarche. Human Biology, 34, 218221.Google Scholar
Long, J.-R., Xu, H., Zhao, L.-J., Liu, P.-Y., Shen, H., Liu, Y.-J., et al. (2005). The oestrogen receptor α gene is linked and/or associated with age at menarche in different ethnic groups. Journal of Medical Genetics, 42, 796800.Google Scholar
Maestripieri, D., Roney, J. R., DeBias, N., Durante, K. M., & Spaepen, G. M. (2004). Father absence, menarche and interest in infants among adolescent girls. Developmental Science, 7, 560566.Google Scholar
Manuck, S. B. (1994). Cardiovascular reactivity in cardiovascular disease. International Journal of Behavioral Medicine, 1, 431.Google Scholar
Manuck, S. B. (2010). The reaction norm in Gene × Environment interaction. Molecular Psychiatry, 15, 881882.Google Scholar
Manuck, S. B., Marsland, A. L., Kaplan, J. R., & Williams, J. K. (1995). The pathogenicity of behavior and its neuroendocrine mediation: An example from coronary artery disease. Psychosomatic Medicine, 57, 275283.Google Scholar
Manuck, S. B., & McCaffery, J. M. (in press). Genetic of stress: Gene–stress correlation and interaction. In Steptoe, A. (Ed.). Handbook of behavioral medicine: Methods and applications. New York: Springer.Google Scholar
Manuck, S. B., Phillips, J. E., Gianaros, P. J., Flory, J. D., & Muldoon, M. F. (2010). Subjective socioeconomic status and presence of the in midlife community volunteers. Psychosomatic Medicine, 72, 3545.Google Scholar
Marshall, L. M., Spiegelman, D., Goldman, M. B., Manson, J. E., Colditz, G. A., Barbieri, R. L., et al. (1998). A prospective study of reproductive factors and oral contraceptive use in relation to risk of uterine leiomyomata. Fertility and Sterility, 70, 432439.Google Scholar
Mendoza, N., Moron, F. J., Quereda, F., Vazquez, F., Rivero, M. C., Martinez-Astorquiza, T., et al. (2008). A digenic combination of polymorphisms within ESR1 and ESR2 genes are associated with age at menarche in the Spanish population. Reproductive Sciences, 15, 305311.Google Scholar
Mezzich, A. C., Tarter, R. E., Giancola, P. R., Lu, S., Kirisci, L., & Parks, S. (1997). Substance use and risky sexual behavior in female adolescents. Drug and Alcohol Dependence, 44, 157166.Google Scholar
Miller, B.C., Norton, M. C., Curtis, T., Hill, E. J., Schvaneveldt, P., & Young, M. H. (1997). The timing of sexual intercourse among adolescents: Family, peer, and other antecedents. Youth and Society, 29, 5466.Google Scholar
Mitchell, E. S., Farin, F. M., Stapleton, P. L., Tsai, J. M., Tao, E. Y., Smith-DiJulio, K., et al. (2008). Association of estrogen-related polymorphisms with age at menarche, age at final menstrual period, and stages of the menopausal transition. Menopause, 15, 105111.Google Scholar
Modugno, F., Zmuda, J. M., Potter, D., Cai, C., Ziv, E., Cummings, S. R., et al. (2005). Association of estrogen receptor α polymorphisms with breast cancer risk in older Caucasian women. International Journal of Cancer, 116, 984991.Google Scholar
Moffitt, T. E., Caspi, A., Belsky, J., & Silva, P. A. (1992). Childhood experience and the onset of menarche: A test of a sociobiological model. Child Development, 63, 4758.Google Scholar
Moffitt, T. E., Caspi, A., & Rutter, M. (2005). Strategy for investigating interactions between measured genes and measured environments. Archives of General Psychiatry, 26, 473481.Google Scholar
Moos, R. H., & Moos, B. S. (1981). Family Environment Scale manual. Palo Alto, CA: Consulting Psychologists Press.Google Scholar
Must, A., Phillips, S. M., Naumova, E. N., Blum, M., Harris, S., Dawson-Hughes, B., et al. (2002). Recall of early menstrual history and menarcheal body size: After 30 years, how well do women remember? American Journal of Epidemiology, 155, 672679.Google Scholar
Onland-Moret, N. C., van Gils, C. H., Roest, M., Grobbee, D. E., & Peeters, P. H. M. (2005). The estrogen receptor α gene and breast cancer risk (The Netherlands). Cancer Causes and Control, 16, 11951202.Google Scholar
Patrick, C. J., Curtin, J. J., & Tellegen, A. (2002). Development and validation of a brief form of the Multidimensional Personality Questionnaire. Psychological Assessment, 14, 150163.Google Scholar
Phinney, V. G., & Jensen, L. C. (1990). The relationship between early development and psychosexual behaviors in adolescent females. Adolescence, 25, 321332.Google Scholar
Plomin, R., McClearn, G. E., Pedersen, N. L., Nesselroade, J. R., & Bergeman, C. S. (1988). Genetic influence on childhood family environment perceived retrospectively from the last half of the life span. Developmental Psychology, 24, 738745.Google Scholar
Plomin, R., McClearn, G. E., Pedersen, N., Nesselroade, J. R., & Bergeman, C. S. (1989). Genetic influence on adult's ratings of their current family environment. Journal of Marriage and the Family, 51, 791803.Google Scholar
Pritchard, J. K., Stephens, M., & Donnelly, P. (2000). Inference of population structure using multilocus genotype data. Genetics, 155, 945959.Google Scholar
Quinlan, R. J. (2003). Father absence, parental care, and female reproductive development. Evolution and Human Behavior, 24, 376390.Google Scholar
Remsberg, K. E., Demerath, E. W., Schubert, C. M., Chumlea, W. C., Sun, S. S., & Siervogel, R. M. (2005). Early menarche and the development of cardiovascular risk factors in adolescent girls: The Fels Longitudinal Study. Journal of Clinical Endocrinology and Metabolism, 90, 27182724.Google Scholar
Romans, S. E., Martin, J. M., Gendall, K., & Herbison, G. P. (2003). Age of menarche: The role of some psychosocial factors. Psychological Medicine, 33, 933939.Google Scholar
Rowe, D. C. (2000). Environmental and genetic influences on pubertal development: Evolutionary life history traits. In Rodgers, J. L., Rowe, D. C., & Miller, W. B. (Eds.), Genetic influences on human fertility and sexuality (pp. 147168). Boston: Kluwer Academic.Google Scholar
Santen, R. J. (1998). Estrogen receptor expression and function in long-term estrogen-deprived human breast cancer cells. Endocrinology, 139, 41644174.Google Scholar
Saudino, K. J. (2005). Behavioral genetics and child temperatment. Developmental and Behavioral Pediatrics, 26, 214223.Google Scholar
Schuit, S. C. E., Oei, H.-H. S., Witteman, J. C. M., van Kessel, C. H. G., van Meurs, J. B. J., Nijhuis, R. L., et al. (2004). Estrogen receptor α gene polymorphisms and risk of myocardial infarction. Journal of the American Medical Association, 291, 29692977.Google Scholar
Shearman, A. M., Cupples, L. A., Demissie, S., Peter, I., Schmid, C. H., Karas, R. H., et al. (2003). Association between estrogen receptor alpha gene variation and cardiovascular disease. Journal of the American Medical Association, 290, 22632270.Google Scholar
Sheese, B. E., Voelker, P. M., Rothbart, M. K., & Posner, M. (2007). Parenting quality interacts with genetic variation in dopamine receptor D4 to influence temperament in early childhood. Development and Psychopathology, 19, 10391046.Google Scholar
Shin, A., Kang, D., Nishio, H., Lee, J. L., Park, S. K., Kim, S.-U., et al. (2003). Estrogen receptor alpha gene polymorphisms and breast cancer risk. Breast Cancer Research and Treatment, 80, 127131.Google Scholar
Silbereisen, R. K., Petersen, A. C., Albrecht, H. T., & Kracke, B. (1989). Maturational timing and the development of problem behavior. Journal of Early Adolescence, 9, 247268.Google Scholar
Sloboda, D. M., Hart, R., Doherty, D. A., Pennell, C. E., & Hickey, M. (2007). Age at menarche: Influences of prenatal and postnatal growth. Journal of Clinical Endocrinology and Metabolism, 92, 4650.Google Scholar
Smith, J. T., Clifton, D. K., & Steiner, R. A. (2006). Regulation of the neuroendocrine reproductive axis by kisspeptin-GPR54 signaling. Reproduction, 131, 623630.Google Scholar
Snieder, H., MacGregor, A. J., & Spector, T. D. (1998). Genes control the cessation of a woman's reproductive life: A twin study of hysterectorm and age at menopause. Journal of Clinical Endocrinology and Metabolism, 83, 18751880.Google Scholar
Stavrou, I., Zois, C., Ioannidis, J. P. A., & Tsatsoulis, A. (2002). Association of polymorphisms of the estrogen receptor α gene with age of menarche. Human Reproduction, 17, 11011105.Google Scholar
Stearns, S. C. (1992). The evolution of life histories. New York: Oxford University Press.Google Scholar
Steinberg, L. (1988). Reciprocal relation between parent–child distance and pubertal maturation. Developmental Psychology, 24, 122128.Google Scholar
Stice, E., Presnell, K., & Bearman, S. K. (2001). Relation of early menarche to depression, eating disorders, substance abuse, and comorbid psychopathology among adolescent girls. Developmental Psychology, 37, 608619.Google Scholar
Surbey, M. K. (1990). Family composition, stress, and the timing of human menarche. In Zigler, T. E. & Bercovitch, F. B. (Eds.), Monographs in primatology: Vol. 13. Socioendocrinology of primate reproduction (pp. 1132). New York: Wiley–Liss.Google Scholar
Taylor, A., & Kim-Cohen, J. (2007). Meta-analysis of gene–environment interactions in developmental psychopathology. Development and Psychopathology, 19, 10291037.Google Scholar
Tellegen, A. (1982). Brief manual for the Multidimensional Personality Questionnaire. Unpublished manuscript, University of Minnesota.Google Scholar
Tither, J. M., & Ellis, B. J. (2008). Impact of fathers and daughers' age of menarche: A genetically and environmentally controlled sibling study. Developmental Psychology, 24, 122128.Google Scholar
Towne, B., Czerwinski, S. A., Demerath, E. W., Blangero, J., Roche, A. F., & Siervogel, R. M. (2004). Heritability of age at menarche in girls from the Fels Longitudinal Study. American Journal of Physical Anthropology, 128, 210219.Google Scholar
Wedren, S., Lovmar, L., Humphreys, K., Magnusson, C., Melhus, H., Syvanen, A.-C., et al. (2004). Oestrogen receptor α gene haplotype and postmenopausal breast cancer risk: A case control study. Breast Cancer Research, 6, R437R449.Google Scholar
Weel, A. E. A. M., Uitterlinden, A. G., Westendorp, I. C. D., Burger, H., Schuit, S. C. E., Hofman, A., et al. (1999). Estrogen receptor polymorphism predicts the onset of natural and surgical menopause. Journal of Clinical Endocrinology and Metabolism, 84, 31463150.Google Scholar
Wierson, M., Long, P. J., & Forehand, R. L. (1993). Toward a new understanding of early menarche: The role of environmental stress in pubertal timing. Adolescence, 28, 913924.Google Scholar
Xu, H., Long, J.-R., Li, M.-X., & Deng, H.-W. (2005). Interaction effects between estrogen receptor α and vitamin D receptor genes on age at menarche Chinese women. Acta Pharmacologica Sinica, 26, 860864.Google Scholar