Hostname: page-component-848d4c4894-p2v8j Total loading time: 0 Render date: 2024-05-11T12:15:33.925Z Has data issue: false hasContentIssue false

Endocrinological and subjective stress responses in children with depressive, anxiety, or externalizing disorders

Published online by Cambridge University Press:  20 September 2017

Stephanie Stadelmann*
Affiliation:
University of Leipzig
Sonia Jaeger
Affiliation:
University of Leipzig
Tina Matuschek
Affiliation:
University of Leipzig
Yoon Ju Bae
Affiliation:
University of Leipzig
Kai von Klitzing
Affiliation:
University of Leipzig
Annette Maria Klein
Affiliation:
University of Leipzig
Mirko Döhnert
Affiliation:
University of Leipzig
*
Address correspondence and reprint requests to: Stephanie Stadelmann, Department of Child and Adolescent Psychiatry, Psychotherapy, and Psychosomatics, University of Leipzig, Liebigstraße 20a, D-04103 Leipzig, Germany; E-mail: Stephanie.stadelmann@medizin.uni-leipzig.de.

Abstract

In this study, we used a stress test to investigate endocrinological and subjective stress responses of 8- to 14-year-old children with internalizing or externalizing disorders and healthy controls. The sample (N = 170) consisted of clinical and community children. Parents were given a diagnostic interview to diagnose their children's psychiatric condition. We measured saliva cortisol and subjectively experienced arousal in children before and after the Trier Social Stress Test for Children. Children also rated their performance immediately after the stress test, and 1 hr later they rated their positive and negative thoughts about this stressful event. Children with internalizing or externalizing disorders exhibited a blunted cortisol response compared to healthy controls. Depressed children rated their test performance lower and reported more negative thoughts after the test in comparison to healthy controls, anxious children reported more arousal before and after the task, and children with externalizing disorders reported more positive thoughts. In regression analyses, cortisol and subjective stress responses were both predictive of psychiatric disorders. The study extends previous work on the relation between psychiatric disorders and children's stress responses to an experimentally induced stress task by including a broad range of psychiatric disorders and by integrating endocrinological and subjective stress responses.

Type
Regular Articles
Copyright
Copyright © Cambridge University Press 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

This publication was supported by the Leipzig Research Center for Civilization Diseases, University of Leipzig, which is funded by the European Union, the European Regional Development Fund, and the Free State of Saxony within the framework of the Excellence Initiative. The last two authors have a combined last authorship.

References

Achenbach, T. M. (1991). Manual for the Child Behavior Checklist/4–18 and 1991 Profile. Burlington, VT: University of Vermont, Department of Psychiatry.Google Scholar
Alink, L. R., van IJzendoorn, M. H., Bakermans-Kranenburg, M. J., Mesman, J., Juffer, F., & Koot, H. M. (2008). Cortisol and externalizing behavior in children and adolescents: Mixed meta-analytic evidence for the inverse relation of basal cortisol and cortisol reactivity with externalizing behavior. Developmental Psychobiology, 50, 427450. doi:10.1002/dev.20300Google Scholar
Alloy, L. B., Abramson, L. Y., Hogan, M. E., Whitehouse, W. G., Rose, D. T., Robinson, M. S., & Lapkin, J. B. (2000). The Temple-Wisconsin Cognitive Vulnerability to Depression Project: Lifetime history of Axis I psychopathology in individuals at high and low cognitive risk for depression. Journal of Abnormal Psychology, 109, 403418. doi:10.1037/0021-843X.109.3.403Google Scholar
American Psychiatric Association. (2000). Diagnostic and statistical manual of mental disorders (4th ed., text rev.). Washington DC: Author.Google Scholar
Angold, A., Costello, E. J., & Worthman, C. M. (1998). Puberty and depression: The roles of age, pubertal status, and pubertal timing. Psychological Medicine, 28, 5161.Google Scholar
Axelson, D., Birmaher, B., Zelazny, J., Kaufman, J., Gill, M. K., & Brent, D. (2009). K-SADS-PL 2009 working draft. Pittsburgh, PA: Western Psychiatric Institute and Clinic, Advanced Center for Intervention and Services Research for Early Onset Mood and Anxiety Disorders.Google Scholar
Ayer, L., Greaves-Lord, K., Althoff, R. R., Hudziak, J. J., Dieleman, G. C., Verhulst, F. C., & van der Ende, J. (2013). Blunted HPA axis response to stress is related to a persistent dysregulation profile in youth. Biological Psychology, 93, 343351. doi:10.1016/j.biopsycho.2013.04.002Google Scholar
Bae, Y. J., Gaudl, A., Jaeger, S., Stadelmann, S., Hiemisch, A., Kiess, W., … Kratzsch, J. (2015). Immunoassay or LC-MS/MS for the measurement of salivary cortisol in children? Clinical Chemistry and Laboratory Medicine. Advance online publication. doi:10.1515/cclm-2015-0412Google Scholar
Barry, C. T., Frick, P. J., & Killian, A. L. (2003). The relation of narcissism and self-esteem to conduct problems in children: A preliminary investigation. Journal of Clinical Child and Adolescent Psychology, 32, 139152. doi:10.1207/S15374424JCCP3201_13Google Scholar
Beck, A. T. (1967). Depression: Clinical, experimental, and theoretical aspects. London: Staples Press.Google Scholar
Booij, S. H., Bouma, E. M. C., de Jonge, P., Ormel, J., & Oldehinkel, A. J. (2013). Chronicity of depressive problems and the cortisol response to psychosocial stress in adolescents: The TRAILS study. Psychoneuroendocrinology, 38, 659666. doi:10.1016/j.psyneuen.2012.08.004Google Scholar
Brosschot, J. F., Gerin, W., & Thayer, J. F. (2006). The perseverative cognition hypothesis: A review of worry, prolonged stress-related physiological activation, and health. Journal of Psychosomatic Research, 60, 113124. doi:10.1016/j.jpsychores.2005.06.074Google Scholar
Burke, H. M., Davis, M. C., Otte, C., & Mohr, D. C. (2005). Depression and cortisol responses to psychological stress: A meta-analysis. Psychoneuroendocrinology, 30, 846856. doi:10.1016/j.psyneuen.2005.02.010Google Scholar
Buske-Kirschbaum, A., Jobst, S., Wustmans, A., Kirschbaum, C., Rauh, W., & Hellhammer, D. H. (1997). Attenuated free cortisol response to psychosocial stress in children with atopic dermatitis. Psychosomatic Medicine, 59, 419426. doi:10.1097/00006842-199707000-00012Google Scholar
Chida, Y., & Hamer, M. (2008). Chronic psychosocial factors and acute physiological responses to laboratory-induced stress in healthy populations: A quantitative review of 30 years of investigations. Psychological Bulletin, 134, 829885. doi:10.1037/a0013342Google Scholar
Chrousos, G. P. (2009). Stress and disorders of the stress system. Nature Reviews Endocrinology, 5, 374381. doi:10.1038/nrendo.2009.106Google Scholar
Colich, N. L., Kircanski, K., Foland-Ross, L. C., & Gotlib, I. H. (2015). HPA-axis reactivity interacts with stage of pubertal development to predict the onset of depression. Psychoneuroendocrinology, 55, 94101. doi:10.1016/j.psyneuen.2015.02.004Google Scholar
Compas, B. E., Connor-Smith, J. K., Saltzman, H., Harding Thomsen, A., & Wadsworth, M. E. (2001). Coping with stress during childhood and adolescence: Problems, progress, and potential in theory and research. Psychological Bulletin, 127, 87127. doi:10.1037//0033-2909.127.1.87Google Scholar
Costello, E. J., Copeland, W., & Angold, A. (2016). The Great Smoky Mountains Study: Developmental epidemiology in the southeastern United States. Social Psychiatry and Psychiatric Epidemiology, 51, 639646. doi:10.1007/s00127-015-1168-1Google Scholar
Crick, N. R., & Zahn-Waxler, C. (2003). The development of psychopathology in females and males: Current progress and future challenges. Development and Psychopathology, 15, 719742.Google Scholar
de Kloet, E. R., Joëls, M., & Holsboer, F. (2005). Stress and the brain: From adaptation to disease. Nature Reviews Neuroscience, 6, 463475. doi:10.1038/nrn1683Google Scholar
Delmo, C., Weiffenbach, O., Gabriel, M., Stadler, C., & Poustka, F. (2001). Kiddie-Sads—Present and Lifetime Version (K-SADS-PL) Diagnostisches Interview (5. Auflage). Frankfurt am Main: Klinik für Psychiatrie und Psychotherapie des Kindes- und Jugendalters.Google Scholar
de Raedt, R., & Koster, E. H. W. (2010). Understanding vulnerability for depression from a cognitive neuroscience perspective: A reappraisal of attentional factors and a new conceptual framework. Cognitive, Affective, & Behavioral Neuroscience, 10, 5070. doi:10.3758/CABN.10.1.50Google Scholar
de Rooij, S. R. (2013). Blunted cardiovascular and cortisol reactivity to acute psychological stress: A summary of results from the Dutch Famine Birth Cohort Study. International Journal of Psychophysiology, 90, 2127. doi:10.1016/j.ijpsycho.2012.09.011Google Scholar
Dickerson, S. S., & Kemeny, M. E. (2004). Acute stressors and cortisol responses: A theoretical integration and synthesis of laboratory research. Psychological Bulletin, 130, 355391. doi:10.1037/0033-2909.130.3.355Google Scholar
Dieleman, G. C., van der Ende, J., Verhulst, F. C., & Huizink, A. C. (2010). Perceived and physiological arousal during a stress task: Can they differentiate between anxiety and depression? Psychoneuroendocrinology, 35, 12231234. doi:10.1016/j.psyneuen.2010.02.012Google Scholar
Edwards, S. L., Rapee, R. M., & Franklin, J. (2003). Postevent rumination and recall bias for a social performance event in high and low socially anxious individuals. Cognitive Therapy and Research, 27, 603617. doi:10.1023/A:1026395526858Google Scholar
Fairchild, G., van Goozen, S. H. M., Stollery, S. J., Brown, J., Gardiner, J., Herbert, J., & Goodyer, I. M. (2008). Cortisol diurnal rhythm and stress reactivity in male adolescents with early-onset or adolescence-onset conduct disorder. Biological Psychiatry, 64, 599606. doi:10.1016/j.biopsych.2008.05.022Google Scholar
Fries, E., Hesse, J., Hellhammer, J., & Hellhammer, D. H. (2005). A new view on hypocortisolism. Psychoneuroendocrinology, 30, 10101016. doi:10.1016/j.psyneuen.2005.04.006Google Scholar
Goodman, R. (1997). The Strengths and Difficulties Questionnaire: A research note. Journal of Child Psychology and Psychiatry, 38, 581586. doi:10.1111/j.1469-7610.1997.tb01545.xGoogle Scholar
Gotlib, I. H., & Joormann, J. (2010). Cognition and depression: Current status and future directions. Annual Review of Clinical Psychology, 6, 285312. doi:10.1146/annurev.clinpsy.121208.131305Google Scholar
Gunnar, M. R., Brodersen, L., Nachmias, M., Buss, K., & Rigatuso, J. (1996). Stress reactivity and attachment security. Developmental Psychobiology, 29, 191204. doi:10.1002/(SICI)1098-2302(199604)29:3<191:AID-DEV1>3.0.CO;2-M3.0.CO;2-M>Google Scholar
Gunnar, M. R., & Quevedo, K. (2007). The neurobiology of stress and development. Annual Review of Psychology, 58, 145173. doi:10.1146/annurev.psych.58.110405.085605Google Scholar
Gunnar, M. R., Talge, N. M., & Herrera, A. (2009). Stressor paradigms in developmental studies: What does and does not work to produce mean increases in salivary cortisol. Psychoneuroendocrinology, 34, 953967. doi:10.1016/j.psyneuen.2009.02.010Google Scholar
Gunnar, M. R., & Vazquez, D. M. (2001). Low cortisol and a flattening of expected daytime rhythm: Potential indices of risk in human development. Development and Psychopathology, 13, 515538. doi:10.1017/S0954579401003066Google Scholar
Gunnar, M. R., Wewerka, S., Frenn, K., Long, J. D., & Griggs, C. (2009). Developmental changes in hypothalamus–pituitary–adrenal activity over the transition to adolescence: Normative changes and associations with puberty. Development and Psychopathology, 21, 6985. doi:10.1017/S0954579409000054.Google Scholar
Ha, C., Petersen, N., & Sharp, C. (2008). Narcissism, self-esteem, and conduct problems: Evidence from a British community sample of 7–11 year olds. European Child and Adolescent Psychiatry, 17, 406413. doi:10.1007/s00787-008-0682-zGoogle Scholar
Hankin, B. L., Badanes, L. S., Abela, J. R. Z., & Watamura, S. E. (2010). Hypothalamic-pituitary-adrenal axis dysregulation in dysphoric children and adolescents: Cortisol reactivity to psychosocial stress from preschool through middle adolescence. Biological Psychiatry, 68, 484490. doi:10.1016/j.biopsych.2010.04.004Google Scholar
Harter, S., & Whitesell, N. R. (2003). Beyond the debate: Why some adolescents report stable self-worth over time and situation, whereas others report changes in self-worth. Journal of Personality, 71, 10271058.Google Scholar
Hartman, C. A., Hermanns, V. W., de Jong, P. J., & Ormel, J. (2013). Self- or parent report of (co-occurring) internalizing and externalizing problems, and basal or reactivity measures of HPA-axis functioning: A systematic evaluation of the internalizing-hyperresponsivity versus externalizing-hyporesponsivity HPA-axis hypothesis. Biological Psychology, 94, 175184. doi:10.1016/j.biopsycho.2013.05.009Google Scholar
Hastings, P. D., Shirtcliff, E. A., Klimes-Dougan, B., Allison, A. L., Derose, L., Kendziora, K. T., … Zahn-Waxler, C. (2011). Allostasis and the development of internalizing and externalizing problems: Changing relations with physiological systems across adolescence. Development and Psychopathology, 23, 11491165. doi:10.1017/S0954579411000538Google Scholar
Jaffee, S. R., McFarquhar, T., Stevens, S., Ouellet-Morin, I., Melhuish, E., & Belsky, J. (2015). Interactive effects of early and recent exposure to stressful contexts on cortisol reactivity in middle childhood. Journal of Child Psychology and Psychiatry, 56, 138146. doi:10.1111/jcpp.12287Google Scholar
Johnson, D. P., & Whisman, M. A. (2013). Gender differences in rumination: A meta-analysis. Personality and Individual Differences, 55, 367374. doi:10.1016/j.paid.2013.03.019Google Scholar
Jose, P. E., & Brown, I. (2008). When does the gender difference in rumination begin? Gender and age differences in the use of rumination by adolescents. Journal of Youth and Adolescence, 37, 180192. doi:10.1007/s10964-006-9166-yGoogle Scholar
Juster, R., McEwen, B. S., & Lupien, S. J. (2010). Allostatic load biomarkers of chronic stress and impact on health and cognition. Neuroscience & Biobehavioral Reviews, 35, 216. doi:10.1016/j.neubiorev.2009.10.002Google Scholar
Kaufman, J., Birmaher, B., Brent, B., Rao, U., & Ryan, N. D. (1996). Kiddie-Sads—Present and Lifetime Version (K-SADS-PL). Pittsburgh: University of Pittsburgh School of Medicine, Department of Psychiatry.Google Scholar
Keenan, K., Hipwell, A., Babinski, D., Bortner, J., Henneberger, A., Hinze, A., … Sapotichne, B. (2013). Examining the developmental interface of cortisol and depression symptoms in young adolescent girls. Psychoneuroendocrinology, 38, 22912299. doi:10.1016/j.psyneuen.2013.04.017Google Scholar
Kessler, R. C., Chiu, W. T., Demler, O., Merikangas, K. R., & Walters, E. E. (2005). Prevalence, severity, and comorbidity of 12-month DSM-IV disorders in the national comorbidity survey replication. Archives of General psychiatry, 62, 709.Google Scholar
Kircanski, K., LeMoult, J., Ordaz, S., & Gotlib, I. H. (2016). Investigating the nature of co-occurring depression and anxiety: Comparing diagnostic and dimensional research approaches. Journal of Affective Disorders. Advance online publication. doi:10.1016/j.jad.2016.08.006Google Scholar
Kircanski, K., Waugh, C. E., Camacho, M. C., & Gotlib, I. H. (2016). Aberrant parasympathetic stress responsivity in pure and co-occurring major depressive disorder and generalized anxiety disorder. Journal of Psychopathology and Behavioral Assessment, 38, 519. doi:10.1007/s10862-015-9493-yGoogle Scholar
Klumbies, E., Braeuer, D., Hoyer, J., & Kirschbaum, C. (2014). The reaction to social stress in social phobia: Discordance between physiological and subjective parameters. PLOS ONE, 9, e105670. doi:10.1371/journal.pone.0105670Google Scholar
Kovacs, M., & Devlin, B. (1998). Internalizing disorders in childhood. Journal of Child Psychology and Psychiatry, 39, 4763. doi:10.1111/1469-7610.00303Google Scholar
Kraemer, H. C., & Blasey, C. M. (2004). Centring in regression analyses: A strategy to prevent errors in statistical inference. International Journal of Methods in Psychiatric Research, 13, 141151.Google Scholar
Kraemer, H. C., Measelle, J. R., Ablow, J. C., Essex, M. J., Boyce, W. T., & Kupfer, D. J. (2003). A new approach to integrating data from multiple informants in psychiatric assessment and research: Mixing and matching contexts and perspectives. American Journal of Psychiatry, 160, 15661577. doi:10.1176/appi.ajp.160.9.1566Google Scholar
Krämer, M., Seefeldt, W. L., Heinrichs, N., Tuschen-Caffier, B., Schmitz, J., Wolf, O. T., & Blechert, J. (2012). Subjective, autonomic, and endocrine reactivity during social stress in children with social phobia. Journal of Abnormal Child Psychology, 40, 95104. doi:10.1007/s10802-011-9548-9Google Scholar
Kudielka, B. M., Buske-Kirschbaum, A., Hellhammer, D. H., & Kirschbaum, C. (2004). Differential heart rate reactivity and recovery after psychosocial stress (TSST) in healthy children, younger adults, and elderly adults: The impact of age and gender. International Journal of Behavioral Medicine, 11, 116121. doi:10.1207/s15327558ijbm1102_8Google Scholar
Kudielka, B. M., Hellhammer, D. H., & Wüst, S. (2009). Why do we respond so differently? Reviewing determinants of human salivary cortisol responses to challenge. Psychoneuroendocrinology, 34, 218. doi:10.1016/j.psyneuen.2008.10.004Google Scholar
Lange, M., Kamtsiuris, P., Lange, C., Schaffrath, R. A., Stolzenberg, H., & Lampert, T. (2007). Messung soziodemographischer Merkmale im Kinder- und Jugendgesundheitssurvey (KiGGS) und ihre Bedeutung am Beispiel der Einschätzung des allgemeinen Gesundheitszustands [Sociodemographic characteristics in the German Health Interview and Examination Survey for Children and Adolescents (KiGGS)—Operationalisation and public health significance, taking as an example the assessment of general state of health]. Bundesgesundheitsblatt, Gesundheitsforschung, Gesundheitsschutz, 50, 578589. doi:10.1007/s00103-007-0219-5Google Scholar
LeMoult, J., Ordaz, S. J., Kircanski, K., Singh, M. K., & Gotlib, I. H. (2015). Predicting first onset of depression in young girls: Interaction of diurnal cortisol and negative life events. Journal of Abnormal Psychology, 124, 850859.Google Scholar
Lopez-Duran, N. L., Kovacs, M., & George, C. J. (2009). Hypothalamic-pituitary-adrenal axis dysregulation in depressed children and adolescents: A meta-analysis. Psychoneuroendocrinology, 34, 12721283. doi:10.1016/j.psyneuen.2009.03.016Google Scholar
Maldonado, E. F., Trianes, V., Cortés, A., Moreno, E., & Escobar, M. (2009). Salivary cortisol response to a psychosocial stressor on children diagnosed with attention-deficit/hyperactivity disorder: Differences between diagnostic subtypes. Spanish Journal of Psychology, 12, 707714. doi:10.1017/S1138741600002079Google Scholar
Mathews, A., & MacLeod, C. (2005). Cognitive vulnerability to emotional disorders. Annual Review of Clinical Psychology, 1, 167195. doi:10.1146/annurev.clinpsy.1.102803.143916Google Scholar
McEwen, B. S. (1998). Stress, adaptation, and disease: Allostasis and allostatic load. Annals of the New York Academy of Sciences, 840, 3344. doi:10.1111/j.1749-6632.1998.tb09546.xGoogle Scholar
Morris, N. M., & Udry, J. R. (1980). Validation of a self-administered instrument to assess stage of adolescent development. Journal of Youth and Adolescence, 9, 271280. doi:10.1007/BF02088471Google Scholar
Muris, P., Meesters, C., Merckelbach, H., Sermon, A., & Zwakhalen, S. (1998). Worry in normal children. Journal of the American Academy of Child & Adolescent Psychiatry, 37, 703710. doi:10.1097/00004583-199807000-00009Google Scholar
Petrowski, K., Wintermann, G., Schaarschmidt, M., Bornstein, S. R., & Kirschbaum, C. (2013). Blunted salivary and plasma cortisol response in patients with panic disorder under psychosocial stress. International Journal of Psychophysiology, 88, 3539. doi:10.1016/j.ijpsycho.2013.01.002Google Scholar
Pruessner, J. C., Kirschbaum, C., Meinlschmid, G., & Hellhammer, D. H. (2003). Two formulas for computation of the area under the curve represent measures of total hormone concentration versus time-dependent change. Psychoneuroendocrinology, 28, 916931. doi:10.1016/S0306-4530(02)00108-7Google Scholar
Quante, M., Hesse, M., Döhnert, M., Fuchs, M., Hirsch, C., Sergeyev, E., … Kiess, W. (2012). The LIFE child study: A life course approach to disease and health. BMC Public Health, 12. doi:10.1186/1471-2458-12-1021Google Scholar
Quas, J. A., Hong, M., Alkon, A., & Boyce, W. T. (2000). Dissociations between psychobiologic reactivity and emotional expression in children. Developmental Psychobiology, 37, 153175.Google Scholar
Raine, A. (2002). Biosocial studies of antisocial and violent behavior in children and adults: A review. Journal of Abnormal Child Psychology, 30, 311326. doi:10.1023/A:1015754122318Google Scholar
Rajmil, L., Herdman, M., Ravens-Sieberer, U., Erhart, M., Alonso, J., & European KIDSCREEN Group. (2014). Socioeconomic inequalities in mental health and health-related quality of life (HRQOL) in children and adolescents from 11 European countries. International Journal of Public Health, 59, 95105. doi:10.1007/s00038-013-0479-9Google Scholar
Randazzo, W. T., Dockray, S., & Susman, E. J. (2008). The stress response in adolescents with inattentive type ADHD symptoms. Child Psychiatry and Human Development, 39, 2738. doi:10.1007/s10578-007-0068-3Google Scholar
Rao, U., Hammen, C., Ortiz, L. R., Chen, L., & Poland, R. E. (2008). Effects of early and recent adverse experiences on adrenal response to psychosocial stress in depressed adolescents. Biological Psychiatry, 64, 521526. doi:10.1016/j.biopsych.2008.05.012Google Scholar
Rapkin, A. J., Tsao, J. C. I., Turk, N., Anderson, M., & Zeltzer, L. K. (2006). Relationships among self-rated Tanner staging, hormones, and psychosocial factors in healthy female adolescents. Journal of Pediatric and Adolescent Gynecology, 19, 181187. doi:10.1016/j.jpag.2006.02.004Google Scholar
Reardon, L. E., Leen-Feldner, E. W., & Hayward, C. (2009). A critical review of the empirical literature on the relation between anxiety and puberty. Clinical Psychology Review, 29, 123. doi:10.1016/j.cpr.2008.09.005Google Scholar
Robinson, M. S., & Alloy, L. B. (2003). Negative cognitive styles and stress-reactive rumination interact to predict depression: A prospective study. Cognitive Therapy and Research, 27, 275291. doi:10.1023/A:1023914416469Google Scholar
Rood, L., Roelofs, J., Bögels, S. M., & Alloy, L. B. (2010). Dimensions of negative thinking and the relations with symptoms of depression and anxiety in children and adolescents. Cognitive Therapy and Research, 34, 333342. doi:10.1007/s10608-009-9261-yGoogle Scholar
Rood, L., Roelofs, J., Bögels, S. M., & Meesters, C. (2012). Stress-reactive rumination, negative cognitive style, and stressors in relationship to depressive symptoms in non-clinical youth. Journal of Youth and Adolescence, 41, 414425. doi:10.1007/s10964-011-9657-3Google Scholar
Rudolph, K. D., Troop-Gordon, W., & Granger, D. A. (2011). Individual differences in biological stress responses moderate the contribution of early peer victimization to subsequent depressive symptoms. Psychopharmacology, 214, 209219. doi:10.1007/s00213-010-1879-7Google Scholar
Sass, H., Wittchen, H. U., Zaudig, M., & Houben, I. (2003). Diagnostisches und statistisches manual psychischer störungen textrevision (DSM-IV-TR). Göttingen: Hogrefe.Google Scholar
Schmitz, J., Krämer, M., Blechert, J., & Tuschen-Caffier, B. (2010). Post-event processing in children with social phobia. Journal of Abnormal Child Psychology, 38, 911919. doi:10.1007/s10802-010-9421-2Google Scholar
Schwartz, A. R., Gerin, W., Davidson, K. W., Pickering, T. G., Brosschot, J. F., Thayer, J. F., … Linden, W. (2003). Toward a causal model of cardiovascular responses to stress and the development of cardiovascular disease. Psychosomatic Medicine, 65, 2235. doi:10.1097/01.PSY.0000046075.79922.61Google Scholar
Stadelmann, S., Grunewald, M., Gibbels, C., Jaeger, S., Matuschek, T., Weis, S., … Döhnert, M. (2017). Self-esteem of 8–14-year-old children with psychiatric disorders: Disorder- and gender-specific effects. Child Psychiatry and Human Development, 48, 4052. doi:10.1007/s10578-016-0651-6Google Scholar
Stetler, C., & Miller, G. E. (2011). Depression and hypothalamic-pituitary-adrenal activation: A quantitative summary of four decades of research. Psychosomatic Medicine, 73, 114126. doi:10.1097/PSY.0b013e31820ad12bGoogle Scholar
Stewart, J. G., Mazurka, R., Bond, L., Wynne-Edwards, K. E., & Harkness, K. L. (2013). Rumination and impaired cortisol recovery following a social stressor in adolescent depression. Journal of Abnormal Child Psychology, 41, 10151026. doi:10.1007/s10802-013-9740-1Google Scholar
Stroud, L. R., Foster, E., Papandonatos, G. D., Handwerger, K., Granger, D. A., Kivlighan, K. T., … Niaura, R. (2009). Stress response and the adolescent transition: Performance versus peer rejection stressors. Development and Psychopathology, 21, 4768. doi:10.1017/S0954579409000042Google Scholar
Susman, E. J. (2006). Psychobiology of persistent antisocial behavior: Stress, early vulnerabilities and the attenuation hypothesis. Neuroscience & Biobehavioral Reviews, 30, 376389. doi:10.1016/j.neubiorev.2005.08.002Google Scholar
van Goozen, S. H., Matthys, W., Cohen-Kettenis, P. T., Buitelaar, J. K., & van Engeland, H. (2000). Hypothalamic-pituitary-adrenal axis and autonomic nervous system activity in disruptive children and matched controls. Journal of the American Academy of Child & Adolescent Psychiatry, 39, 14381445. doi:10.1097/00004583-200011000-00019Google Scholar
van Goozen, S. H. M., Matthys, W., Cohen-Kettenis, P. T., Gispen-de Wied, C., Wiegant, V. M., & van Engeland, H. (1998). Salivaryc and cardiovascular activity during stress in oppositional-defiant disorder boys and normal controls. Biological Psychiatry, 43, 531539. doi:10.1016/S0006-3223(97)00253-9Google Scholar
van West, D., Claes, S., Sulon, J., & Deboutte, D. (2008). Hypothalamic-pituitary-adrenal reactivity in prepubertal children with social phobia. Journal of Affective Disorders, 111, 281290. doi:10.1016/j.jad.2008.03.006Google Scholar
von Klitzing, K., White, L. O., Otto, Y., Fuchs, S., Egger, H. L., & Klein, A. M. (2014). Depressive comorbidity in preschool anxiety disorder. Journal of Child Psychology and Psychiatry, and Allied Disciplines, 55, 11071116. doi:10.1111/jcpp.12222Google Scholar
Watkins, E. R. (2008). Constructive and unconstructive repetitive thought. Psychological Bulletin, 134, 163206. doi:10.1037/0033-2909.134.2.163Google Scholar
Weiss, R. H. (2006). Sprachfreier Grundintelligenztest Skala 2—Revision (CFT-20-R). Göttingen: Hogrefe.Google Scholar
Young, E. A., Abelson, J. L., & Cameron, O. G. (2004). Effect of comorbid anxiety disorders on the hypothalamic-pituitary-adrenal axis response to a social stressor in major depression. Biological Psychiatry, 56, 113120. doi:10.1016/j.biopsych.2004.03.017Google Scholar
Zoccola, P. M., & Dickerson, S. S. (2012). Assessing the relationship between rumination and cortisol: A review. Journal of Psychosomatic Research, 73, 19. doi:10.1016/j.jpsychores.2012.03.007Google Scholar