Skip to main content Accessibility help
×
Home

Early life adversity alters normal sex-dependent developmental dynamics of DNA methylation

  • Renaud Massart (a1), Zsofia Nemoda (a1), Matthew J. Suderman (a1), Sheila Sutti (a2), Angela M. Ruggiero (a2), Amanda M. Dettmer (a2), Stephen J. Suomi (a2) and Moshe Szyf (a1)...

Abstract

Studies in rodents, nonhuman primates, and humans suggest that epigenetic processes mediate between early life experiences and adult phenotype. However, the normal evolution of epigenetic programs during child development, the effect of sex, and the impact of early life adversity on these trajectories are not well understood. This study mapped the genome-wide DNA methylation changes in CD3+ T lymphocytes from rhesus monkeys from postnatal day 14 through 2 years of age in both males and females and determined the impact of maternal deprivation on the DNA methylation profile. We show here that DNA methylation profiles evolve from birth to adolescence and are sex dependent. DNA methylation changes accompany imposed weaning, attenuating the difference between males and females. Maternal separation at birth alters the normal evolution of DNA methylation profiles and targets genes that are also affected by a later stage maternal separation, that is, weaning. Our results suggest that early life events dynamically interfere with the normal developmental evolution of the DNA methylation profile and that these changes are highly effected by sex.

Copyright

Corresponding author

Address correspondence and reprint requests to: Stephen J. Suomi, Laboratory of Comparative Ethology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Department of Health and Human Services, Bethesda, MD 20892-7971; E-mail: suomis@lce.nichd.nih.gov; or Moshe Szyf, Department of Pharmacology and Therapeutics, McGill University, 3655 Promonade Sir William Osler, Montreal, QC H3G Y6, Canada; E-mail: moshe.szyf@mcgill.ca.

References

Hide All
Barr, C. S., Newman, T. K., Becker, M. L., Parker, C. C., Champoux, M., Lesch, K. P., et al. (2003). The utility of the non-human primate; model for studying gene by environment interactions in behavioral research. Genes Brain Behavior, 2, 336340.
Bartel, D. P. (2004). MicroRNAs: Genomics, biogenesis, mechanism, and function. Cell, 116, 281297.
Bolstad, B. M., Irizarry, R. A., Astrand, M., & Speed, T. P. (2003). A comparison of normalization methods for high density oligonucleotide array data based on variance and bias. Bioinformatics, 19, 185193.
Cao-Lei, L., Dancause, K. N., Elgbeili, G., Massart, R., Szyf, M., Liu, A., et al. (2015). DNA methylation mediates the impact of exposure to prenatal maternal stress on BMI and central adiposity in children at age 13(1/2) years: Project Ice Storm. Epigenetics. Advance online publication. doi:10.1080/15592294.2015.1063771
Cao-Lei, L., Massart, R., Suderman, M. J., Machnes, Z., Elgbeili, G., Laplante, D. P., et al. (2014). DNA methylation signatures triggered by prenatal maternal stress exposure to a natural disaster: Project Ice Storm. PLOS ONE, 9, e107653. doi:10.1371/journal.pone.0107653
Chaloner, A., & Greenwood-Van Meerveld, B. (2013). Sexually dimorphic effects of unpredictable early life adversity on visceral pain behavior in a rodent model. Journal of Pain, 14, 270280. doi:10.1016/j.jpain.2012.11.008
Champoux, M., Bennett, A., Shannon, C., Higley, J. D., Lesch, K. P., & Suomi, S. J. (2002). Serotonin transporter gene polymorphism, differential early rearing, and behavior in rhesus monkey neonates. Molecular Psychiatry, 7, 10581063. doi:10.1038/sj.mp.4001157
Conti, G., Hansman, C., Heckman, J. J., Novak, M. F., Ruggiero, A., & Suomi, S. J. (2012). Primate evidence on the late health effects of early-life adversity. Proceedings of the National Academy of Sciences, 109, 88668871. doi:10.1073/pnas.1205340109
Dannlowski, U., Kugel, H., Redlich, R., Halik, A., Schneider, I., Opel, N., et al. (2014). Serotonin transporter gene methylation is associated with hippocampal gray matter volume. Human Brain Mapping, 35, 53565367. doi:10.1002/hbm.22555
Davis, E. P., & Pfaff, D. (2014). Sexually dimorphic responses to early adversity: Implications for affective problems and autism spectrum disorder. Psychoneuroendocrinology, 49, 1125. doi:10.1016/j.psyneuen.2014.06.014
Dettmer, A. M., Novak, M. A., Suomi, S. J., & Meyer, J. S. (2012). Physiological and behavioral adaptation to relocation stress in differentially reared rhesus monkeys: Hair cortisol as a biomarker for anxiety-related responses. Psychoneuroendocrinology, 37, 191199. doi:10.1016/j.psyneuen.2011.06.003
Graf, S., Nielsen, F. G., Kurtz, S., Huynen, M. A., Birney, E., Stunnenberg, H., et al. (2007). Optimized design and assessment of whole genome tiling arrays. Bioinformatics, 23, i195i204. doi:10.1093/bioinformatics/btm200
Grassi-Oliveira, R., Honeycutt, J. A., Holland, F. H., Ganguly, P., & Brenhouse, H. C. (2016). Cognitive impairment effects of early life stress in adolescents can be predicted with early biomarkers: Impacts of sex, experience, and cytokines. Psychoneuroendocrinology, 71, 1930. doi:10.1016/j.psyneuen.2016.04.016
Heim, C., & Nemeroff, C. B. (2001). The role of childhood trauma in the neurobiology of mood and anxiety disorders: Preclinical and clinical studies. Biological Psychiatry, 49, 10231039. doi:S000632230101157X
Hellman, A., & Chess, A. (2007). Gene body-specific methylation on the active X chromosome. Science, 315, 11411143.
Hotchkiss, R. D. (1948). The quantitative separation of purines, pyrimidines, and nucleosides by paper chromatography. Journal of Biological Chemistry, 175, 315332.
Houtepen, L. C., Vinkers, C. H., Carrillo-Roa, T., Hiemstra, M., van Lier, P. A., Meeus, W., et al. (2016). Genome-wide DNA methylation levels and altered cortisol stress reactivity following childhood trauma in humans. Nature Communications, 7, 10967. doi:10.1038/ncomms10967
Kaufman, J., Plotsky, P. M., Nemeroff, C. B., & Charney, D. S. (2000). Effects of early adverse experiences on brain structure and function: Clinical implications. Biological Psychiatry, 48, 778790. doi:10.S0006-3223(00)00998-7
Klengel, T., Mehta, D., Anacker, C., Rex-Haffner, M., Pruessner, J. C., Pariante, C. M., et al. (2013). Allele-specific FKBP5 DNA demethylation mediates gene-childhood trauma interactions. Nature Neuroscience, 16, 3341. doi:10.1038/nn.3275
Kriaucionis, S., & Heintz, N. (2009). The nuclear DNA base 5-hydroxymethylcytosine is present in Purkinje neurons and the brain. Science, 324, 929930. doi:10.1126/science.1169786
Leussis, M. P., Freund, N., Brenhouse, H. C., Thompson, B. S., & Andersen, S. L. (2012). Depressive-like behavior in adolescents after maternal separation: Sex differences, controllability, and GABA. Developmental Neuroscience, 34, 210217. doi:10.1159/000339162
Levine, A., Cantoni, G. L., & Razin, A. (1991). Inhibition of promoter activity by methylation: Possible involvement of protein mediators. Proceedings of the National Academy of Sciences, 88, 65156518.
McEwen, B. S. (2000). Effects of adverse experiences for brain structure and function. Biological Psychiatry, 48, 721731. doi:10.S0006-3223(00)00964-1
McGowan, P. O., Sasaki, A., D'Alessio, A. C., Dymov, S., Labonte, B., Szyf, M., et al. (2009). Epigenetic regulation of the glucocorticoid receptor in human brain associates with childhood abuse. Nature Neuroscience, 12, 342348. doi:10.1038/nn.2270
McGowan, P. O., Sasaki, A., Huang, T. C., Unterberger, A., Suderman, M., Ernst, C., et al. (2008). Promoter-wide hypermethylation of the ribosomal RNA gene promoter in the suicide brain. PLOS ONE, 3, e2085. doi:10.1371/journal.pone.0002085
McGowan, P. O., Suderman, M., Sasaki, A., Huang, T. C., Hallett, M., Meaney, M. J., et al. (2011). Broad epigenetic signature of maternal care in the brain of adult rats. PLOS ONE, 6, e14739. doi:10.1371/journal.pone.0014739
Meaney, M. J., & Szyf, M. (2005). Maternal care as a model for experience-dependent chromatin plasticity? Trends in Neuroscience, 28, 456463. doi:10.1016/j.tins.2005.07.006
Mehta, D., Klengel, T., Conneely, K. N., Smith, A. K., Altmann, A., Pace, T. W., et al. (2013). Childhood maltreatment is associated with distinct genomic and epigenetic profiles in posttraumatic stress disorder. Proceedings of the National Academy of Sciences, 110, 83028307. doi:10.1073/pnas.1217750110
Mohandas, T., Sparkes, R. S., & Shapiro, L. J. (1981). Reactivation of an inactive human X chromosome: Evidence for X inactivation by DNA methylation. Science, 211, 393396.
Moskalev, E. A., Zavgorodnij, M. G., Majorova, S. P., Vorobjev, I. A., Jandaghi, P., Bure, I. V., et al. (2011). Correction of PCR-bias in quantitative DNA methylation studies by means of cubic polynomial regression. Nucleic Acids Research, 39, e77. doi:10.1093/nar/gkr213
Murgatroyd, C., Patchev, A. V., Wu, Y., Micale, V., Bockmuhl, Y., Fischer, D., et al. (2009). Dynamic DNA methylation programs persistent adverse effects of early-life stress. Nature Neuroscience, 12, 15591566. doi:10.1038/nn.2436
Power, C., Atherton, K., Strachan, D. P., Shepherd, P., Fuller, E., Davis, A., et al. (2007). Life-course influences on health in British adults: Effects of socio-economic position in childhood and adulthood. International Journal of Epidemiology, 36, 532539.
Provencal, N., Suderman, M. J., Guillemin, C., Massart, R., Ruggiero, A., Wang, D., et al. (2012). The signature of maternal rearing in the methylome in rhesus macaque prefrontal cortex and T cells. Journal of Neuroscience, 32, 1562615642. doi:10.1523/jneurosci.1470-12.2012
Razin, A., & Cedar, H. (1993). DNA methylation and embryogenesis. Exs, 64, 343357.
Razin, A., & Szyf, M. (1984). DNA methylation patterns: Formation and function. Biochimica Biophysica Acta, 782, 331342.
Roth, T. L., Lubin, F. D., Funk, A. J., & Sweatt, J. D. (2009). Lasting epigenetic influence of early-life adversity on the BDNF gene. Biological Psychiatry, 65, 760769. doi:10.1016/j.biopsych.2008.11.028
Sinclair, K. D., Lea, R. G., Rees, W. D., & Young, L. E. (2007). The developmental origins of health and disease: Current theories and epigenetic mechanisms. Social and Reproductive Fertility, 64(Suppl.), 425443.
Smyth, G. K. (2005). Limma: Linear models for microarray data. In Gentleman, V. C. R., Dudoit, S., Irizarry, R., & Huber, W. (Eds.), Bioinformatics and computational biology solutions using R and bioconductor (Vol. 1, pp. 397420). New York: Springer.
Strahl, B. D., & Allis, C. D. (2000). The language of covalent histone modifications. Nature, 403, 4145.
Suderman, M., McGowan, P. O., Sasaki, A., Huang, T. C., Hallett, M. T., Meaney, M. J., et al. (2012). Conserved epigenetic sensitivity to early life experience in the rat and human hippocampus. Proceeding of the National Academy of Sciences, 109(Suppl. 2), 1726617272. doi:10.1073/pnas.1121260109
Suomi, S. J. (1991). Early stress and adult emotional reactivity in rhesus monkeys. Ciba Foundation Symposiums, 156, 171183.
Szyf, M. (2011). DNA methylation, the early-life social environment and behavioral disorders. Journal of Neurodevelopmental Disorders, 3, 238249. doi:10.1007/s11689-011-9079-2
Szyf, M. (2012). The early-life social environment and DNA methylation. Clinical Genetics, 81, 341349. doi:10.1111/j.1399-0004.2012.01843.x
Szyf, M. (2014). Examining peripheral DNA methylation in behavioral epigenetic and epigenetic psychiatry: Opportunities and challenges. Epigenomics, 6, 581584. doi:10.2217/epi.14.57
Szyf, M., Tang, Y. Y., Hill, K. G., & Musci, R. (2016). The dynamic epigenome and its implications for behavioral interventions: A role for epigenetics to inform disorder prevention and health promotion. Transactions in Behavior Medicine, 6, 5562. doi:10.1007/s13142-016-0387-7
Szyf, M., Weaver, I., & Meaney, M. (2007). Maternal care, the epigenome and phenotypic differences in behavior. Reproductive Toxicology, 24, 919.
Theil, E. C., & Zamenhof, S. (1963). Studies on 6-methylaminopurine (6-methyladenine) in bacterial deoxyribonucleic acid. Journal of Biological Chemistry, 238, 30583064.
Wang, D., Szyf, M., Benkelfat, C., Provencal, N., Turecki, G., Caramaschi, D., et al. (2012). Peripheral SLC6A4 DNA methylation is associated with in vivo measures of human brain serotonin synthesis and childhood physical aggression. PLOS ONE, 7, e39501. doi:10.1371/journal.pone.0039501
Weaver, I. C., Cervoni, N., Champagne, F. A., D'Alessio, A. C., Sharma, S., Seckl, J. R., et al. (2004). Epigenetic programming by maternal behavior. Nature Neuroscience, 7, 847854.
Weaver, I. C., Hellstrom, I. C., Brown, S. E., Andrews, S. D., Dymov, S., Diorio, J., et al. (2014). The methylated-DNA binding protein MBD2 enhances NGFI-A (egr-1)-mediated transcriptional activation of the glucocorticoid receptor. Philosophical Transactions of the Royal Society of London B: Biological Sciences, 369, 20130513. doi:10.1098/rstb.2013.0513
Wu, T. P., Wang, T., Seetin, M. G., Lai, Y., Zhu, S., Lin, K., et al. (2016). DNA methylation on N-adenine in mammalian embryonic stem cells. Nature. Advance online publication. doi:10.1038/nature17640
Wyatt, G. R. (1950). Occurrence of 5-methylcytosine in nucleic acids. Nature, 166, 237238.

Related content

Powered by UNSILO
Type Description Title
UNKNOWN
Supplementary materials

Massart supplementary material S1
Supplementary Figure

 Unknown (2.8 MB)
2.8 MB
EXCEL
Supplementary materials

Massart supplementary material S2
Supplementary Table

 Excel (1.7 MB)
1.7 MB
EXCEL
Supplementary materials

Massart supplementary material S3
Supplementary Table

 Excel (264 KB)
264 KB
EXCEL
Supplementary materials

Massart supplementary material S4
Supplementary Table

 Excel (36 KB)
36 KB
EXCEL
Supplementary materials

Massart supplementary material S5
Supplementary Table

 Excel (218 KB)
218 KB
EXCEL
Supplementary materials

Massart supplementary material S6
Supplementary Table

 Excel (93 KB)
93 KB
EXCEL
Supplementary materials

Massart supplementary material S7
Supplementary Table

 Excel (44 KB)
44 KB
UNKNOWN
Supplementary materials

Massart supplementary material S8
Supplementary Table

 Unknown (3.2 MB)
3.2 MB
EXCEL
Supplementary materials

Massart supplementary material S9
Supplementary Table

 Excel (1.9 MB)
1.9 MB

Early life adversity alters normal sex-dependent developmental dynamics of DNA methylation

  • Renaud Massart (a1), Zsofia Nemoda (a1), Matthew J. Suderman (a1), Sheila Sutti (a2), Angela M. Ruggiero (a2), Amanda M. Dettmer (a2), Stephen J. Suomi (a2) and Moshe Szyf (a1)...

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.