Hostname: page-component-78c5997874-mlc7c Total loading time: 0 Render date: 2024-11-18T06:08:17.724Z Has data issue: false hasContentIssue false

Reward-related processing in the human brain: Developmental considerations

Published online by Cambridge University Press:  07 October 2008

Dominic S. Fareri
Affiliation:
Rutgers University
Laura N. Martin
Affiliation:
Rutgers University
Mauricio R. Delgado*
Affiliation:
Rutgers University
*
Address correspondence and reprint requests to: Mauricio R. Delgado, Department of Psychology, Smith Hall, Room 340, Rutgers University, 101 Warren Street, Newark, NJ 07102; E-mail: delgado@psychology.rutgers.edu.

Abstract

The pursuit of rewarding experiences motivates everyday human behavior, and can prove beneficial when pleasurable, positive consequences result (e.g., satisfying hunger, earning a paycheck). However, reward seeking may also be maladaptive and lead to risky decisions with potentially negative long-term consequences (e.g., unprotected sex, drug use). Such risky decision making is often observed during adolescence, a time in which important structural and functional refinements occur in the brain's reward circuitry. Although much of the brain develops before adolescence, critical centers for goal-directed behavior, such as frontal corticobasal ganglia networks, continue to mature. These ongoing changes may underlie the increases in risk-taking behavior often observed during adolescence. Further, typical development of these circuits is vital to our ability to make well-informed decisions; atypical development of the human reward circuitry can have severe implications, as is the case in certain clinical and developmental conditions (e.g., attention-deficit/hyperactivity disorder). This review focuses on current research probing the neural correlates of reward-related processing across human development supporting the current research hypothesis that immature or atypical corticostriatal circuitry may underlie maladaptive behaviors observed in adolescence.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

The authors acknowledge Marek Mandau for assistance with the figures and the support from the National Institute on Drug Abuse Grant DA022998 (to M.R.D.).

References

Anderson, A. K., Christoff, K., Stappen, I., Panitz, D., Ghahremani, D. G., Glover, G., et al. (2003). Dissociated neural representations of intensity and valence in human olfaction. Nature Neuroscience, 6, 196202.CrossRefGoogle ScholarPubMed
Assaf, Y., & Pasternak, O. (2008). Diffusion tensor imaging (DTI)-based white matter mapping in brain research: A review. Journal of Molecular Neuroscience, 34, 5161.CrossRefGoogle ScholarPubMed
Balleine, B. W., Delgado, M. R., & Hikosaka, O. (2007). The role of the dorsal striatum in reward and decision-making. Journal of Neuroscience, 27, 81618165.CrossRefGoogle ScholarPubMed
Balleine, B. W., & Dickinson, A. (1998). Goal-directed instrumental action: Contingency and incentive learning and their cortical substrates. Neuropharmacology, 37, 407419.CrossRefGoogle ScholarPubMed
Barto, A. G. (1995). Adaptive critics and the basal ganglia. In Houk, J. C., Davis, J., Beiser, D. (Eds.), Models of information processing in the basal ganglia (pp. 215232). Cambridge, MA: MIT Press.Google Scholar
Bechara, A., Tranel, D., & Damasio, H. (2000). Characterization of the decision-making deficit of patients with ventromedial prefrontal cortex lesions. Brain, 123 (Pt. 11), 21892202.CrossRefGoogle ScholarPubMed
Berg, J., Dickhaut, J., & McCabe, K. (1995). Trust, reciprocity and social history. Games and Economic Behavior, 10, 122142.CrossRefGoogle Scholar
Berns, G. S., McClure, S. M., Pagnoni, G., & Montague, P. R. (2001). Predictability modulates human brain response to reward. Journal of Neuroscience, 21, 27932798.CrossRefGoogle ScholarPubMed
Bjork, J. M., Knutson, B., Fong, G. W., Caggiano, D. M., Bennett, S. M., & Hommer, D. W. (2004). Incentive-elicited brain activation in adolescents: Similarities and differences from young adults. Journal of Neuroscience, 24, 17931802.CrossRefGoogle ScholarPubMed
Bjork, J. M., Smith, A. R., Danube, C. L., & Hommer, D. W. (2007). Developmental differences in posterior mesofrontal cortex recruitment by risky rewards. Journal of Neuroscience, 27, 48394849.CrossRefGoogle ScholarPubMed
Breiter, H. C., Aharon, I., Kahneman, D., Dale, A., & Shizgal, P. (2001). Functional imaging of neural responses to expectancy and experience of monetary gains and losses. Neuron, 30, 619639.CrossRefGoogle ScholarPubMed
Breiter, H. C., Gollub, R. L., Weisskoff, R. M., Kennedy, D. N., Makris, N., Berke, J. D., et al. (1997). Acute effects of cocaine on human brain activity and emotion. Neuron, 19, 591611.CrossRefGoogle ScholarPubMed
Bush, G., Luu, P., & Posner, M. I. (2000). Cognitive and emotional influences in anterior cingulate cortex. Trends in Cognitive Science, 4, 215222.CrossRefGoogle ScholarPubMed
Cacioppo, J. T., Amaral, D. G., Blanchard, J. J., Cameron, J. L., Carter, C. S., Crews, D., et al. (2007). Social neuroscience: Progress and implications for mental health. Perspectives on Psychological Science, 2, 99123.CrossRefGoogle ScholarPubMed
Camerer, C. F., Loewenstein, G., & Prelec, D. (2005). Neuroeconomics: How neuroscience can inform economics. Journal of Economic Literature, 34, 964.CrossRefGoogle Scholar
Casey, B. J., Castellanos, F. X., Giedd, J. N., Marsh, W. L., Hamburger, S. D., Schubert, A. B., et al. (1997). Implication of right frontostriatal circuitry in response inhibition and attention-deficit/hyperactivity disorder. Journal of the American Academy of Child & Adolescent Psychiatry, 36, 374383.CrossRefGoogle ScholarPubMed
Casey, B. J., Cohen, J. D., Jezzard, P., Turner, R., Noll, D. C., Trainor, R. J., et al. (1995). Activation of prefrontal cortex in children during a nonspatial working memory task with functional MRI. NeuroImage, 2, 221229.CrossRefGoogle ScholarPubMed
Casey, B. J., & Durston, S. (2006). From behavior to cognition to the brain and back: What have we learned from functional imaging studies of attention deficit hyperactivity disorder? American Journal of Psychiatry, 163, 957960.CrossRefGoogle Scholar
Casey, B. J., Galvan, A., & Hare, T. A. (2005). Changes in cerebral functional organization during cognitive development. Current Opinion in Neurobiology, 15, 239244.CrossRefGoogle ScholarPubMed
Casey, B. J., Giedd, J. N., & Thomas, K. M. (2000). Structural and functional brain development and its relation to cognitive development. Biological Psychology, 54, 241257.CrossRefGoogle ScholarPubMed
Casey, B. J., Jones, R. M., & Hare, T. A. (2008). The adolescent brain. Annals of the New York Academy of Sciences, 1124, 111126.CrossRefGoogle ScholarPubMed
Castellanos, F. X., Giedd, J. N., Marsh, W. L., Hamburger, S. D., Vaituzis, A. C., Dickstein, D. P., et al. (1996). Quantitative brain magnetic resonance imaging in attention-deficit hyperactivity disorder. Archives of General Psychiatry, 53, 607616.CrossRefGoogle ScholarPubMed
Caviness, V. S. Jr., Kennedy, D. N., Richelme, C., Rademacher, J., & Filipek, P. A. (1996). The human brain age 7–11 years: A volumetric analysis based on magnetic resonance images. Cerebral Cortex, 6, 726736.CrossRefGoogle Scholar
Chambers, R. A., Taylor, J. R., & Potenza, M. N. (2003). Developmental neurocircuitry of motivation in adolescence: A critical period of addiction vulnerability. American Journal of Psychiatry, 160, 10411052.CrossRefGoogle ScholarPubMed
Chiu, P. H., Kayali, M. A., Kishida, K. T., Tomlin, D., Klinger, L. G., Klinger, M. R., et al. (2008). Self responses along cingulate cortex reveal quantitative neural phenotype for high-functioning autism. Neuron, 57, 463473.CrossRefGoogle ScholarPubMed
Cohen, J. D., Forman, S. D., Braver, T. S., Casey, B. J., Servan-Schreiber, D., & Noll, D. C. (1994). Activation of prefrontal cortex in a nonspatial working memory task. Human Brain Mapping, 1, 293304.CrossRefGoogle Scholar
Cools, R., Barker, R. A., Sahakian, B. J., & Robbins, T. W. (2001). Enhanced or impaired cognitive function in Parkinson's disease as a function of dopaminergic medication and task demands. Cerebral Cortex, 11, 11361143.CrossRefGoogle ScholarPubMed
Critchley, H. D., & Rolls, E. T. (1996). Olfactory neuronal responses in the primate orbitofrontal cortex: Analysis in an olfactory discrimination task. Journal of Neurophysiology, 75, 16591672.CrossRefGoogle Scholar
Daw, N. D., O'Doherty, J. P., Dayan, P., Seymour, B., & Dolan, R. J. (2006). Cortical substrates for exploratory decisions in humans. Nature, 441, 876879.CrossRefGoogle ScholarPubMed
Dayan, P., & Balleine, B. W. (2002). Reward, motivation, and reinforcement learning. Neuron, 36, 285298.CrossRefGoogle ScholarPubMed
de Quervain, D. J., Fischbacher, U., Treyer, V., Schellhammer, M., Schnyder, U., Buck, A., et al. (2004). The neural basis of altruistic punishment. Science, 305, 12541258.CrossRefGoogle ScholarPubMed
Delgado, M. R. (2007). Reward-related responses in the human striatum. Annals of the New York Academy of Sciences, 1104, 7088.CrossRefGoogle ScholarPubMed
Delgado, M. R., Frank, R. H., & Phelps, E. A. (2005). Perceptions of moral character modulate the neural systems of reward during the trust game. Nature Neuroscience, 8, 16111618.CrossRefGoogle ScholarPubMed
Delgado, M. R., Locke, H. M., Stenger, V. A., & Fiez, J. A. (2003). Dorsal striatum responses to reward and punishment: Effects of valence and magnitude manipulations. Cognitive Affective and Behavioral Neuroscience, 3, 2738.CrossRefGoogle ScholarPubMed
Delgado, M. R., Miller, M. M., Inati, S., & Phelps, E. A. (2005). An fMRI study of reward-related probability learning. NeuroImage, 24, 862873.CrossRefGoogle ScholarPubMed
Delgado, M. R., Nystrom, L. E., Fissell, C., Noll, D. C., & Fiez, J. A. (2000). Tracking the hemodynamic responses to reward and punishment in the striatum. Journal of Neurophysiology, 84, 30723077.CrossRefGoogle ScholarPubMed
Delgado, M. R., Stenger, V. A., & Fiez, J. A. (2004). Motivation-dependent responses in the human caudate nucleus. Cerebral Cortex, 14, 10221030.CrossRefGoogle ScholarPubMed
Durston, S., & Casey, B. J. (2006). What have we learned about cognitive development from neuroimaging? Neuropsychologia, 44, 21492157.CrossRefGoogle ScholarPubMed
Durston, S., Davidson, M. C., Tottenham, N., Galvan, A., Spicer, J., Fossella, J. A., et al. (2006). A shift from diffuse to focal cortical activity with development. Developmental Science, 9, 18.CrossRefGoogle ScholarPubMed
Durston, S., Thomas, K. M., Yang, Y., Ulug, A. M., Zimmerman, R. D., & Casey, B. J. (2002). A neural basis for the development of inhibitory control. Developmental Science, 5, F9F16.Google Scholar
Durston, S., Tottenham, N. T., Thomas, K. M., Davidson, M. C., Eigsti, I. M., Yang, Y. et al. , (2003). Differential patterns of striatal activation in young children with and without ADHD. Biological Psychiatry, 53, 871878.CrossRefGoogle ScholarPubMed
Elliott, R., Friston, K. J., & Dolan, R. J. (2000). Dissociable neural responses in human reward systems. Journal of Neuroscience, 20, 61596165.CrossRefGoogle ScholarPubMed
Elliott, R., Newman, J. L., Longe, O. A., & William Deakin, J. F. (2004). Instrumental responding for rewards is associated with enhanced neuronal response in subcortical reward systems. NeuroImage, 21, 984990.CrossRefGoogle ScholarPubMed
Ernst, M., Nelson, E. E., Jazbec, S., McClure, E. B., Monk, C. S., Leibenluft, E., et al. (2005). Amygdala and nucleus accumbens in responses to receipt and omission of gains in adults and adolescents. NeuroImage, 25, 12791291.CrossRefGoogle ScholarPubMed
Ernst, M., Nelson, E. E., McClure, E. B., Monk, C. S., Munson, S., Eshel, N., et al. (2004). Choice selection and reward anticipation: An fMRI study. Neuropsychologia, 42, 1585–97.CrossRefGoogle ScholarPubMed
Ernst, M., Pine, D. S., & Hardin, M. (2006). Triadic model of the neurobiology of motivated behavior in adolescence. Psychological Medicine, 36, 299312.CrossRefGoogle ScholarPubMed
Eshel, N., Nelson, E. E., Blair, R. J., Pine, D. S., & Ernst, M. (2007). Neural substrates of choice selection in adults and adolescents: Development of the ventrolateral prefrontal and anterior cingulate cortices. Neuropsychologia, 45, 12701279.CrossRefGoogle ScholarPubMed
Fecteau, S., Pascual-Leone, A., Zald, D. H., Liguori, P., Theoret, H., Boggio, P. S., et al. (2007). Activation of prefrontal cortex by transcranial direct current stimulation reduces appetite for risk during ambiguous decision making. Journal of Neuroscience, 27, 62126218.CrossRefGoogle ScholarPubMed
Filoteo, J. V., Maddox, W. T., Simmons, A. N., Ing, A. D., Cagigas, X. E., Matthews, S., et al. (2005). Cortical and subcortical brain regions involved in rule-based category learning. NeuroReport, 16, 111115.CrossRefGoogle ScholarPubMed
Fiorillo, C. D., Tobler, P. N., & Schultz, W. (2003). Discrete coding of reward probability and uncertainty by dopamine neurons. Science, 299, 18981902.CrossRefGoogle ScholarPubMed
Forbes, E. E., & Dahl, R. E. (2005). Neural systems of positive affect: Relevance to understanding child and adolescent depression? Development and Psychopathology, 17, 827850.CrossRefGoogle ScholarPubMed
Forbes, E. E., May, C. J., Siegle, G. J., Ladouceur, C. D., Ryan, N. D., Carter, C. S., et al. (2006). Reward-related decision-making in pediatric major depressive disorder: An fMRI study. Journal of Child Psychology and Psychiatry, 47, 10311040.CrossRefGoogle ScholarPubMed
Fox, N. A., Henderson, H. A., Marshall, P. J., Nichols, K. E., & Ghera, M. M. (2005). Behavioral inhibition: Linking biology and behavior within a developmental framework. Annual Review of Psychology, 56, 235262.CrossRefGoogle ScholarPubMed
Fudge, J. L., & Haber, S. N. (2002). Defining the caudal ventral striatum in primates: Cellular and histochemical features. Journal of Neuroscience, 22, 1007810082.CrossRefGoogle ScholarPubMed
Galvan, A., Hare, T. A., Davidson, M., Spicer, J., Glover, G., & Casey, B. J. (2005). The role of ventral frontostriatal circuitry in reward-based learning in humans. Journal of Neuroscience, 25, 86508656.CrossRefGoogle ScholarPubMed
Galvan, A., Hare, T. A., Parra, C. E., Penn, J., Voss, H., Glover, G., et al. (2006). Earlier development of the accumbens relative to orbitofrontal cortex might underlie risk-taking behavior in adolescents. Journal of Neuroscience, 26, 68856892.CrossRefGoogle ScholarPubMed
Gardner, M., & Steinberg, L. (2005). Peer influence on risk taking, risk preference, and risky decision making in adolescence and adulthood: An experimental study. Developmental Psychology, 41, 625635.CrossRefGoogle ScholarPubMed
Giedd, J. N. (2004). Structural magnetic resonance imaging of the adolescent brain. Annals of the New York Academy of Sciences, 1021, 7785.CrossRefGoogle ScholarPubMed
Giedd, J. N., Blumenthal, J., Jeffries, N. O., Castellanos, F. X., Liu, H., Zijdenbos, A., et al. (1999). Brain development during childhood and adolescence: A longitudinal MRI study. Nature Neuroscience, 2, 861863.CrossRefGoogle ScholarPubMed
Giedd, J. N., Snell, J. W., Lange, N., Rajapakse, J. C., Casey, B. J., Kozuch, P. L., et al. (1996). Quantitative magnetic resonance imaging of human brain development: Ages 4–18. Cerebral Cortex, 6, 551560.CrossRefGoogle ScholarPubMed
Glimcher, P. W., & Rustichini, A. (2004). Neuroeconomics: The consilience of brain and decision. Science, 306, 447452.CrossRefGoogle ScholarPubMed
Gottfried, J. A., O'Doherty, J., & Dolan, R. J. (2003). Encoding predictive reward value in human amygdala and orbitofrontal cortex. Science, 301, 11041107.CrossRefGoogle ScholarPubMed
Greene, J. D., Nystrom, L. E., Engell, A. D., Darley, J. M., & Cohen, J. D. (2004). The neural bases of cognitive conflict and control in moral judgment. Neuron, 44, 389400.CrossRefGoogle ScholarPubMed
Groenewegen, H. J., & Uylings, H. B. (2000). The prefrontal cortex and the integration of sensory, limbic and autonomic information. Progressive Brain Research, 126, 328.CrossRefGoogle ScholarPubMed
Guyer, A. E., Nelson, E. E., Perez-Edgar, K., Hardin, M. G., Roberson-Nay, R., Monk, C. S., et al. (2006). Striatal functional alteration in adolescents characterized by early childhood behavioral inhibition. Journal of Neuroscience, 26, 63996405.CrossRefGoogle ScholarPubMed
Haber, S. N. (2003). The primate basal ganglia: Parallel and integrative networks. Journal of Chemical Neuroanatomy, 26, 317330.CrossRefGoogle ScholarPubMed
Hampton, A. N., & O'Doherty, J. P. (2007). Decoding the neural substrates of reward-related decision making with functional MRI. Proceedings of the National Academy of Sciences of the United Sates of America, 104, 13771382.CrossRefGoogle ScholarPubMed
Hardin, M. G., Schroth, E., Pine, D. S., & Ernst, M. (2007). Incentive-related modulation of cognitive control in healthy, anxious, and depressed adolescents: Development and psychopathology related differences. Journal of Child Psychology and Psychiatry, 48, 446454.CrossRefGoogle ScholarPubMed
Haruno, M., & Kawato, M. (2006). Different neural correlates of reward expectation and reward expectation error in the putamen and caudate nucleus during stimulus–action–reward association learning. Journal of Neurophysiology, 95, 948959.CrossRefGoogle ScholarPubMed
Haruno, M., Kuroda, T., Doya, K., Toyama, K., Kimura, M., Samejima, K., et al. (2004). A neural correlate of reward-based behavioral learning in caudate nucleus: A functional magnetic resonance imaging study of a stochastic decision task. Journal of Neuroscience, 24, 16601665.CrossRefGoogle ScholarPubMed
Huettel, S. A. (2006). Behavioral, but not reward, risk modulates activation of prefrontal, parietal, and insular cortices. Cognitive Affective and Behavioral Neuroscience, 6, 141151.CrossRefGoogle Scholar
Jernigan, T. L., Trauner, D. A., Hesselink, J. R., & Tallal, P. A. (1991). Maturation of human cerebrum observed in vivo during adolescence. Brain, 114(Pt. 5), 20372049.CrossRefGoogle ScholarPubMed
Kable, J. W., & Glimcher, P. W. (2007). The neural correlates of subjective value during intertemporal choice. Nature Neuroscience, 10, 16251633.CrossRefGoogle ScholarPubMed
Kelley, A. E., & Berridge, K. C. (2002). The neuroscience of natural rewards: Relevance to addictive drugs. Journal of Neuroscience, 22, 33063311.CrossRefGoogle ScholarPubMed
Killen, M. (2007). Children's social and moral reasoning about exclusion. Current Directions in Psychological Science, 16, 3236.CrossRefGoogle Scholar
King-Casas, B., Tomlin, D., Anen, C., Camerer, C. F., Quartz, S. R., & Montague, P. R. (2005). Getting to know you: Reputation and trust in a two-person economic exchange. Science, 308, 7883.CrossRefGoogle Scholar
Kirsch, P., Schienle, A., Stark, R., Sammer, G., Blecker, C., Walter, B., et al. (2003). Anticipation of reward in a nonaversive differential conditioning paradigm and the brain reward system: An event-related fMRI study. NeuroImage, 20, 10861095.CrossRefGoogle Scholar
Klingberg, T., Hedehus, M., Temple, E., Salz, T., Gabrieli, J. D., Moseley, M. E., et al. (2000). Microstructure of temporo-parietal white matter as a basis for reading ability: Evidence from diffusion tensor magnetic resonance imaging. Neuron, 25, 493500.CrossRefGoogle ScholarPubMed
Klingberg, T., Vaidya, C. J., Gabrieli, J. D., Moseley, M. E., & Hedehus, M. (1999). Myelination and organization of the frontal white matter in children: A diffusion tensor MRI study. NeuroReport, 10, 28172821.CrossRefGoogle ScholarPubMed
Knutson, B., Adams, C. M., Fong, G. W., & Hommer, D. (2001). Anticipation of increasing monetary reward selectively recruits nucleus accumbens. Journal of Neuroscience, 21, RC159.CrossRefGoogle ScholarPubMed
Knutson, B., & Cooper, J. C. (2005). Functional magnetic resonance imaging of reward prediction. Current Opinion in Neurology, 18, 411417.CrossRefGoogle ScholarPubMed
Knutson, B., Fong, G. W., Bennett, S. M., Adams, C. M., & Hommer, D. (2003). A region of mesial prefrontal cortex tracks monetarily rewarding outcomes: Characterization with rapid event-related fMRI. NeuroImage, 18, 263272.CrossRefGoogle ScholarPubMed
Knutson, B., Westdorp, A., Kaiser, E., & Hommer, D. (2000). FMRI visualization of brain activity during a monetary incentive delay task. NeuroImage, 12, 2027.CrossRefGoogle ScholarPubMed
Koepp, M. J., Gunn, R. N., Lawrence, A. D., Cunningham, V. J., Dagher, A., Jones, T., et al. (1998). Evidence for striatal dopamine release during a video game. Nature, 393, 266268.CrossRefGoogle ScholarPubMed
Kringelbach, M. L. (2005). The human orbitofrontal cortex: Linking reward to hedonic experience. Nature Reviews Neuroscience, 6, 691702.CrossRefGoogle ScholarPubMed
Kuhnen, C. M., & Knutson, B. (2005). The neural basis of financial risk taking. Neuron, 47, 763770.CrossRefGoogle ScholarPubMed
LeDoux, J. E. (1996). The emotional brain: The mysterious underpinnings of emotional life. New York: Simon & Schuster.Google Scholar
LeDoux, J. E. (2000). Emotion circuits in the brain. Annual Review of Neuroscience, 23, 155184.CrossRefGoogle ScholarPubMed
Li, J., McClure, S. M., King-Casas, B., & Montague, P. R. (2006). Policy adjustment in a dynamic economic game. PLoS ONE, 1, e103.CrossRefGoogle Scholar
Liston, C., Watts, R., Tottenham, N., Davidson, M. C., Niogi, S., Ulug, A. M., et al. (2006). Frontostriatal microstructure modulates efficient recruitment of cognitive control. Cerebral Cortex, 16, 553560.CrossRefGoogle ScholarPubMed
Loewenstein, G., Rick, S., & Cohen, J. D. (2008). Neuroeconomics. Annual Review of Psychology, 59, 647672.CrossRefGoogle ScholarPubMed
Logothetis, N. K., Pauls, J., Augath, M., Trinath, T., & Oeltermann, A. (2001). Neurophysiological investigation of the basis of the fMRI signal. Nature, 412, 150157.CrossRefGoogle ScholarPubMed
Luna, B., & Sweeney, J. A. (2004). The emergence of collaborative brain function: FMRI studies of the development of response inhibition. Annals of the New York Academy of Sciences, 1021, 296309.CrossRefGoogle ScholarPubMed
Luna, B., Thulborn, K. R., Munoz, D. P., Merriam, E. P., Garver, K. E., Minshew, N. J., et al. (2001). Maturation of widely distributed brain function subserves cognitive development. NeuroImage, 13, 786793.CrossRefGoogle ScholarPubMed
May, J. C., Delgado, M. R., Dahl, R. E., Stenger, V. A., Ryan, N. D., Fiez, J. A., et al. (2004). Event-related functional magnetic resonance imaging of reward-related brain circuitry in children and adolescents. Biological Psychiatry, 55, 359366.CrossRefGoogle ScholarPubMed
McClure, S. M., Berns, G. S., & Montague, P. R. (2003). Temporal prediction errors in a passive learning task activate human striatum. Neuron, 38, 339346.CrossRefGoogle Scholar
McClure, S. M., Ericson, K. M., Laibson, D. I., Loewenstein, G., & Cohen, J. D. (2007). Time discounting for primary rewards. Journal of Neuroscience, 27, 57965804.CrossRefGoogle ScholarPubMed
McClure, S. M., Laibson, D. I., Loewenstein, G., & Cohen, J. D. (2004). Separate neural systems value immediate and delayed monetary rewards. Science, 306, 503507.CrossRefGoogle ScholarPubMed
McClure, S. M., Li, J., Tomlin, D., Cypert, K. S., Montague, L. M., & Montague, P. R. (2004). Neural correlates of behavioral preference for culturally familiar drinks. Neuron, 44, 379387.CrossRefGoogle ScholarPubMed
Middleton, F. A., & Strick, P. L. (2000a). Basal ganglia and cerebellar loops: Motor and cognitive circuits. Brain Research Reviews, 31, 236250.CrossRefGoogle ScholarPubMed
Middleton, F. A., & Strick, P. L. (2000b). Basal ganglia output and cognition: Evidence from anatomical, behavioral, and clinical studies. Brain and Cognition, 42, 183200.CrossRefGoogle ScholarPubMed
Miller, E. K., & Cohen, J. D. (2001). An integrative theory of prefrontal cortex function. Annual Review of Neuroscience, 24, 167202.CrossRefGoogle ScholarPubMed
Montague, P. R., & Berns, G. S. (2002). Neural economics and the biological substrates of valuation. Neuron, 36, 265284.CrossRefGoogle ScholarPubMed
Murray, E. A. (2007). The amygdala, reward and emotion. Trends in Cognitive Science, 11, 489497.CrossRefGoogle ScholarPubMed
Nieuwenhuis, S., Heslenfeld, D. J., von Geusau, N. J., Mars, R. B., Holroyd, C. B., & Yeung, N. (2005). Activity in human reward-sensitive brain areas is strongly context dependent. NeuroImage, 25, 13021309.CrossRefGoogle ScholarPubMed
Ochsner, K. N., & Lieberman, M. D. (2001). The emergence of social cognitive neuroscience. American Psychologist, 56, 717734.CrossRefGoogle ScholarPubMed
O'Doherty, J., Dayan, P., Schultz, J., Deichmann, R., Friston, K., & Dolan, R. J. (2004). Dissociable roles of ventral and dorsal striatum in instrumental conditioning. Science, 304, 452454.CrossRefGoogle ScholarPubMed
O'Doherty, J., Kringelbach, M. L., Rolls, E. T., Hornak, J., & Andrews, C. (2001). Abstract reward and punishment representations in the human orbitofrontal cortex. Nature Neuroscience, 4, 95102.CrossRefGoogle ScholarPubMed
O'Doherty, J., Rolls, E. T., Francis, S., Bowtell, R., McGlone, F., Kobal, G., et al. (2000). Sensory-specific satiety-related olfactory activation of the human orbitofrontal cortex. NeuroReport, 11, 893897.CrossRefGoogle ScholarPubMed
O'Doherty, J., Winston, J., Critchley, H., Perrett, D., Burt, D. M., & Dolan, R. J. (2003). Beauty in a smile: The role of medial orbitofrontal cortex in facial attractiveness. Neuropsychologia, 41, 147155.CrossRefGoogle Scholar
O'Doherty, J. P. (2004). Reward representations and reward-related learning in the human brain: Insights from neuroimaging. Current Opinion in Neurobiology, 14, 769776.CrossRefGoogle ScholarPubMed
O'Doherty, J. P., Deichmann, R., Critchley, H. D., & Dolan, R. J. (2002). Neural responses during anticipation of a primary taste reward. Neuron, 33, 815826.CrossRefGoogle ScholarPubMed
O'Donoghue, T., & Rabin, M. (2001). Risky behavior among youths: Some issues from behavioral economics. In Gruber, J. (Ed.), Risky behavior among youths: An economic analysis (pp. 2967). Chicago: University of Chicago Press.CrossRefGoogle Scholar
Pagnoni, G., Zink, C. F., Montague, P. R., & Berns, G. S. (2002). Activity in human ventral striatum locked to errors of reward prediction. Nature Neuroscience, 5, 9798.CrossRefGoogle ScholarPubMed
Pasupathy, A., & Miller, E. K. (2005). Different time courses of learning-related activity in the prefrontal cortex and striatum. Nature, 433, 873876.CrossRefGoogle ScholarPubMed
Paulus, M. P., Lovero, K. L., Wittmann, M., & Leland, D. S. (2008). Reduced behavioral and neural activation in stimulant users to different error rates during decision making. Biological Psychiatry, 63, 10541060.CrossRefGoogle ScholarPubMed
Pfefferbaum, A., Mathalon, D. H., Sullivan, E. V., Rawles, J. M., Zipursky, R. B., & Lim, K. O. (1994). A quantitative magnetic resonance imaging study of changes in brain morphology from infancy to late adulthood. Archives of Neurology, 51, 874887.CrossRefGoogle ScholarPubMed
Pierpaoli, C., Jezzard, P., Basser, P. J., Barnett, A., & Di Chiro, G. (1996). Diffusion tensor MR imaging of the human brain. Radiology, 201, 637648.CrossRefGoogle ScholarPubMed
Plassmann, H., O'Doherty, J., & Rangel, A. (2007). Orbitofrontal cortex encodes willingness to pay in everyday economic transactions. Journal of Neuroscience, 27, 99849988.CrossRefGoogle ScholarPubMed
Plassmann, H., O'Doherty, J., Shiv, B., & Rangel, A. (2008). Marketing actions can modulate neural representations of experienced pleasantness. Proceedings of the National Academy of Sciences of the United States of America, 105, 10501054.CrossRefGoogle ScholarPubMed
Poldrack, R. A., Temple, E., Protopapas, A., Nagarajan, S., Tallal, P., Merzenich, M., et al. (2001). Relations between the neural bases of dynamic auditory processing and phonological processing: Evidence from fMRI. Journal of Cognitive Neuroscience, 13, 687697.CrossRefGoogle ScholarPubMed
Preuschoff, K., Quartz, S. R., & Bossaerts, P. (2008). Human insula activation reflects risk prediction errors as well as risk. Journal of Neuroscience, 28, 27452752.CrossRefGoogle ScholarPubMed
Reiss, A. L., Abrams, M. T., Singer, H. S., Ross, J. L., & Denckla, M. B. (1996). Brain development, gender and IQ in children. A volumetric imaging study. Brain, 119(Pt. 5), 17631774.CrossRefGoogle ScholarPubMed
Reyna, V. F., & Farley, F. (2006). Risk and rationality in adolescent decision-making: Implications for theory, practice and public policy. Psychological Science in the Public Interest, 7, 144.CrossRefGoogle ScholarPubMed
Robbins, T. W., & Everitt, B. J. (1996). Neurobehavioural mechanisms of reward and motivation. Current Opinion in Neurobiology, 6, 228236.CrossRefGoogle ScholarPubMed
Rolls, E. T. (2000). The orbitofrontal cortex and reward. Cerebral Cortex, 10, 284294.CrossRefGoogle ScholarPubMed
Rolls, E. T., Sienkiewicz, Z. J., & Yaxley, S. (1989). Hunger modulates the responses to gustatory stimuli of single neurons in the caudolateral orbitofrontal cortex of the macaque monkey. European Journal of Neuroscience, 1, 5360.CrossRefGoogle ScholarPubMed
Rushworth, M. F., Walton, M. E., Kennerley, S. W., & Bannerman, D. M. (2004). Action sets and decisions in the medial frontal cortex. Trends in Cognitive Science, 8, 410417.CrossRefGoogle ScholarPubMed
Sanfey, A. G. (2007). Social decision-making: Insights from game theory and neuroscience. Science, 318, 598602.CrossRefGoogle ScholarPubMed
Sanfey, A. G., Rilling, J. K., Aronson, J. A., Nystrom, L. E., & Cohen, J. D. (2003). The neural basis of economic decision-making in the Ultimatum Game. Science, 300, 17551758.CrossRefGoogle ScholarPubMed
Scheres, A., Milham, M. P., Knutson, B., & Castellanos, F. X. (2007). Ventral striatal hyporesponsiveness during reward anticipation in attention-deficit/hyperactivity disorder. Biological Psychiatry, 61, 720724.CrossRefGoogle ScholarPubMed
Schonberg, T., Daw, N. D., Joel, D., & O'Doherty, J. P. (2007). Reinforcement learning signals in the human striatum distinguish learners from nonlearners during reward-based decision making. Journal of Neuroscience, 27, 1286012867.CrossRefGoogle ScholarPubMed
Schultz, W. (2007). Multiple dopamine functions at different time courses. Annual Review of Neuroscience, 30, 259288.CrossRefGoogle ScholarPubMed
Schultz, W., Dayan, P., & Montague, P. R. (1997). A neural substrate of prediction and reward. Science, 275, 15931599.CrossRefGoogle ScholarPubMed
Schultz, W., & Dickinson, A. (2000). Neuronal coding of prediction errors. Annual Review of Neuroscience, 23, 473500.CrossRefGoogle ScholarPubMed
Schultz, W., Tremblay, L., & Hollerman, J. R. (2000). Reward processing in primate orbitofrontal cortex and basal ganglia. Cerebral Cortex, 10, 272284.CrossRefGoogle ScholarPubMed
Seger, C. A., & Cincotta, C. M. (2005). The roles of the caudate nucleus in human classification learning. Journal of Neuroscience, 25, 29412951.CrossRefGoogle ScholarPubMed
Sowell, E. R., Thompson, P. M., Holmes, C. J., Jernigan, T. L., & Toga, A. W. (1999). In vivo evidence for post-adolescent brain maturation in frontal and striatal regions. Nature Neuroscience, 2, 859861.CrossRefGoogle ScholarPubMed
Spear, L. P. (2000). The adolescent brain and age-related behavioral manifestations. Neuroscience and Biobehavioral Review, 24, 417463.CrossRefGoogle ScholarPubMed
Tamm, L., Menon, V., & Reiss, A. L. (2002). Maturation of brain function associated with response inhibition. Journal of the American Academy of Child & Adolescent Psychiatry, 41, 12311238.CrossRefGoogle ScholarPubMed
Thut, G., Schultz, W., Roelcke, U., Nienhusmeier, M., Missimer, J., Maguire, R. P., et al. (1997). Activation of the human brain by monetary reward. NeuroReport, 8, 12251228.CrossRefGoogle ScholarPubMed
Tomlin, D., Kayali, M. A., King-Casas, B., Anen, C., Camerer, C. F., Quartz, S. R., et al. (2006). Agent-specific responses in the cingulate cortex during economic exchanges. Science, 312, 10471050.CrossRefGoogle ScholarPubMed
Tremblay, L., & Schultz, W. (1999). Relative reward preference in primate orbitofrontal cortex. Nature, 398, 704708.CrossRefGoogle ScholarPubMed
Tricomi, E., Delgado, M. R., McCandliss, B. D., McClelland, J. L., & Fiez, J. A. (2006). Performance feedback drives caudate activation in a phonological learning task. Journal of Cognitive Neuroscience, 18, 10291043.CrossRefGoogle Scholar
Tricomi, E. M., Delgado, M. R., & Fiez, J. A. (2004). Modulation of caudate activity by action contingency. Neuron, 41, 281292.CrossRefGoogle ScholarPubMed
van Leijenhorst, L., Crone, E. A., & Bunge, S. A. (2006). Neural correlates of developmental differences in risk estimation and feedback processing. Neuropsychologia, 44, 21582170.CrossRefGoogle ScholarPubMed
Volkow, N. D., Wang, G. J., Fowler, J. S., Logan, J., Jayne, M., Franceschi, D., et al. (2002). “Nonhedonic” food motivation in humans involves dopamine in the dorsal striatum and methylphenidate amplifies this effect. Synapse, 44, 175180.CrossRefGoogle ScholarPubMed
Voorn, P., Vanderschuren, L. J., Groenewegen, H. J., Robbins, T. W., & Pennartz, C. M. (2004). Putting a spin on the dorsal-ventral divide of the striatum. Trends in Neuroscience, 27, 468474.CrossRefGoogle ScholarPubMed
Watanabe, M. (1996). Reward expectancy in primate prefrontal neurons. Nature, 382, 629632.CrossRefGoogle ScholarPubMed
Wickens, J. R., Budd, C. S., Hyland, B. I., & Arbuthnott, G. W. (2007). Striatal contributions to reward and decision making: Making sense of regional variations in a reiterated processing matrix. Annals of the New York Academy of Sciences, 1104, 192212.CrossRefGoogle Scholar
Wise, R. A. (2004). Dopamine, learning and motivation. Nataur Reviews. Neuroscience, 5, 483494.CrossRefGoogle ScholarPubMed
Zink, C. F., Pagnoni, G., Martin-Skurski, M. E., Chappelow, J. C., & Berns, G. S. (2004). Human striatal responses to monetary reward depend on saliency. Neuron, 42, 509517.CrossRefGoogle ScholarPubMed