Skip to main content Accessibility help

Unistructurality of cluster algebras

  • Peigen Cao (a1) (a2) and Fang Li (a3)


We prove that any skew-symmetrizable cluster algebra is unistructural, which is a conjecture by Assem, Schiffler and Shramchenko. As a corollary, we obtain that a cluster automorphism of a cluster algebra ${\mathcal{A}}({\mathcal{S}})$ is just an automorphism of the ambient field ${\mathcal{F}}$ which restricts to a permutation of the cluster variables of ${\mathcal{A}}({\mathcal{S}})$ .



Hide All
[ASS14]Assem, I., Schiffler, R. and Shramchenko, V., Cluster automorphisms and compatibility of cluster variables, Glasg. Math. J. 56 (2014), 705720.
[Baz16]Bazier-Matte, V., Unistructurality of cluster algebras of type Ã, J. Algebra 464 (2016), 297315.
[BP20]Bazier-Matte, V. and Plamondon, P. G., Unistructurality of cluster algebras from unpunctured surfaces, Proc. Amer. Math. Soc. 148 (2020), 23972409.
[CL18]Cao, P. and Li, F., The enough g-pairs property and denominator vectors of cluster algebras, Preprint (2018), arXiv:1803.05281.
[CP15]Ceballos, C. and Pilaud, V., Denominator vectors and compatibility degrees in cluster algebras of finite type, Trans. Amer. Math. Soc. 367 (2015), 14211439.
[CKLP13]Cerulli Irelli, G., Keller, B., Labardini-Fragoso, D. and Plamondon, P. G., Linear independence of cluster monomials for skew-symmetric cluster algebras, Compos. Math. 149 (2013), 17531764.
[Dav18]Davison, B., Positivity for quantum cluster algebras, Ann. of Math. (2) 187 (2018), 157219.
[FST08]Fomin, S., Shapiro, M. and Thurston, D., Cluster algebras and triangulated surfaces. I. Cluster complexes, Acta Math. 201 (2008), 83146.
[FZ02]Fomin, S. and Zelevinsky, A., Cluster algebras. I. Foundations, J. Amer. Math. Soc. 15 (2002), 497529 (electronic).
[FZ03a]Fomin, S. and Zelevinsky, A., Y-systems and generalized associahedra, Ann. of Math. (2) 158 (2003), 9771018.
[FZ03b]Fomin, S. and Zelevinsky, A., Cluster algebras. II. Finite type classification, Invent. Math. 154 (2003), 63121.
[FZ07]Fomin, S. and Zelevinsky, A., Cluster algebras. IV. Coefficients, Compos. Math. 143 (2007), 112164.
[GSV08]Gekhtman, M., Shapiro, M. and Vainshtein, A., On the properties of the exchange graph of a cluster algebra, Math. Res. Lett. 15 (2008), 321330.
[GHKK18]Gross, M., Hacking, P., Keel, S. and Kontsevich, M., Canonical bases for cluster algebras, J. Amer. Math. Soc. 31 (2018), 497608.
[LS15]Lee, K. and Schiffler, R., Positivity for cluster algebras, Ann. of Math. (2) 182 (2015), 73125.
[NZ12]Nakanishi, T. and Zelevinsky, A., On tropical dualities in cluster algebras, in Algebraic groups and quantum groups, Contemporary Mathematics, vol. 565 (American Mathematical Society, Providence, RI, 2012), 217226.
[Zhu07]Zhu, B., BGP-reflection functors and cluster combinatorics, J. Pure Appl. Algebra 209 (2007), 497506.
MathJax is a JavaScript display engine for mathematics. For more information see


MSC classification

Unistructurality of cluster algebras

  • Peigen Cao (a1) (a2) and Fang Li (a3)


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.