Skip to main content Accessibility help
×
Home

Reciprocity sheaves

  • Bruno Kahn (a1), Shuji Saito (a2), Takao Yamazaki (a3) and Kay Rülling (a4)

Abstract

We start developing a notion of reciprocity sheaves, generalizing Voevodsky’s homotopy invariant presheaves with transfers which were used in the construction of his triangulated categories of motives. We hope that reciprocity sheaves will eventually lead to the definition of larger triangulated categories of motivic nature, encompassing non-homotopy invariant phenomena.

Copyright

References

Hide All
[BK16] Barbieri-Viale, L. and Kahn, B., On the derived category of 1 motives , Astérisque 381 (2016), 1254.
[BS14] Binda, F. and Saito, S., Relative cycles with moduli and regulator maps, Preprint (2014),arXiv:1412.0385.
[Bou85] Bourbaki, N., Algèbre commutative (Masson, Paris, 1985).
[CR11] Chatzistamatiou, A. and Rülling, K., Higher direct images of the structure sheaf in positive characteristic , Algebra Number Theory 5 (2011), 693775.
[CR12] Chatzistamatiou, A. and Rülling, K., Hodge–Witt cohomology and Witt-rational singularities , Doc. Math. 17 (2012), 663781.
[CHK97] Colliot-Thélène, J.-L., Hoobler, R. and Kahn, B., The Bloch–Ogus–Gabber theorem, Fields Institute Communications, vol. 16 (American Mathematical Society, Providence, RI, 1997), 3194.
[CSS83] Colliot-Thélène, J. L., Sansuc, J.-J. and Soulé, C., Torsion dans le groupe de Chow de codimension deux , Duke Math. J. 50 (1983), 763801.
[Dég07] Déglise, F., Finite correspondences and transfers over a regular base , in Algebraic cycles and motives, vol. 1, London Mathematical Society Lecture Note Series, vol. 343, eds Nagel, J. and Peters, C. (Cambridge University Press, Cambridge, 2007), 138205.
[EGAII] Grothendieck, A. and Dieudonné, J., Éléments de géométrie algébrique: étude globale élémentaire de quelques classes de morphismes , Publ. Math. Inst. Hautes Études Sci. 8 (1961), 5222.
[EGAIV] Grothendieck, A. and Dieudonné, J., Éléments de géométrie algébrique: étude locale des schémas et des morphismes de schémas (quatrième partie) , Publ. Math. Inst. Hautes Études Sci. 32 (1967), 5361.
[Eke84] Ekedahl, T., On the multiplicative properties of the de Rham–Witt complex I , Ark. Mat. 22 (1984), 185239.
[Ful98] Fulton, W., Intersection theory, Ergebnisse der Mathematik und ihrer Grenzgebiete 3. Folge, vol. 2 (Springer, Berlin, 1998).
[Gra85] Grayson, D., Universal exactness in algebraic K-theory , J. Pure Appl. Algebra 36 (1985), 139141.
[Gro85] Gros, M., Classes de Chern et classes de cycles en cohomologie de Hodge–Witt logarithmique , Mém. Soc. Math. Fr. (N.S.) 21 (1985), 187.
[Ill79] Illusie, L., Complexe de de Rham–Witt et cohomologie cristalline , Ann. Sci. Éc. Norm. Supér. (4) 12 (1979), 501661.
[IR12] Ivorra, F. and Rülling, K., $K$ -groups of reciprocity functors, J. Algebraic Geom., to appear, Preprint (2012), arXiv:1209.1217.
[Kah91] Kahn, B., Foncteurs de Mackey à réciprocité, Preprint (1991), arXiv:1210.7577.
[KS11] Kerz, M. and Saito, S., Chow group of 0-cycles with modulus and higher dimensional class field theory, Duke Math. J., to appear, Preprint (2011), arXiv:1304.4400.
[MVW06] Mazza, C., Voevodsky, V. and Weibel, C., Lecture notes on motivic cohomology, Clay Mathematics Monographs, vol. 2 (American Mathematical Society, Providence, RI, 2006); Clay Mathematics Institute, Cambridge, MA.
[Rül07] Rülling, K., The generalized de Rham–Witt complex over a field is a complex of zero-cycles , J. Algebraic Geom. 16 (2007), 109169.
[Rus13] Russell, H., Albanese varieties with modulus over a perfect field , Algebra Number Theory 7 (2013), 853892.
[Ser59] Serre, J.-P., Groupes algébriques et corps de classes (Hermann, Paris, 1959).
[SS03] Spiess, M. and Szamuely, T., On the Albanese map for smooth quasiprojective varieties , Math. Ann. 235 (2003), 117.
[SV96] Suslin, A. and Voevodsky, V., Singular homology of abstract algebraic varieties , Invent. Math. 123 (1996), 6194.
[SV00] Suslin, A. and Voevodsky, V., Relative cycles and Chow sheaves , in Cycles, transfers, and motivic homology theories, Annals of Mathematics Studies, vol. 143 (Princeton University Press, Princeton, NJ, 2000), 1085.
[Voe00a] Voevodsky, V., Cohomological theory of presheaves with transfers , in Cycles, transfers, and motivic homology theories, Annals of Mathematics Studies, vol. 143 (Princeton University Press, Princeton, NJ, 2000), 87137.
[Voe00b] Voevodsky, V., Triangulated categories of motives over a field , in Cycles, transfers, and motivic homology theories, Annals of Mathematics Studies, vol. 143 (Princeton University Press, Princeton, NJ, 2000), 188238.
MathJax
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.

Keywords

MSC classification

Reciprocity sheaves

  • Bruno Kahn (a1), Shuji Saito (a2), Takao Yamazaki (a3) and Kay Rülling (a4)

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed