Skip to main content Accessibility help
×
Home
Hostname: page-component-78dcdb465f-bmnx5 Total loading time: 0.595 Render date: 2021-04-14T14:19:48.179Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": false, "newCiteModal": false, "newCitedByModal": true }

Pretentious multiplicative functions and the prime number theorem for arithmetic progressions

Published online by Cambridge University Press:  14 May 2013

Dimitris Koukoulopoulos
Affiliation:
Département de mathématiques et de statistique, Université de Montréal, CP 6128 succ. Centre-Ville, Montréal, QC H3C 3J7, Canada email koukoulo@dms.umontreal.ca
Corresponding
E-mail address:
Rights & Permissions[Opens in a new window]

Abstract

Building on the concept of pretentious multiplicative functions, we give a new and largely elementary proof of the best result known on the counting function of primes in arithmetic progressions.

Type
Research Article
Copyright
© The Author(s) 2013 

References

Bombieri, E., Maggiorazione del resto nel ‘Primzahlsatz’ col metodo di Erdős–Selberg, Ist. Lombardo Accad. Sci. Lett. Rend. A 96 (1962), 343350 (in Italian).Google Scholar
Daboussi, H., Sur le théorème des nombres premiers. [On the prime number theorem], C. R. Acad. Sci. Paris Sér. I Math. 298 (1984), 161164 (in French, with a summary in English).Google Scholar
Davenport, H., Multiplicative number theory, Graduate Texts in Mathematics, vol. 74, third edition (Springer, New York, NY, 2000), revised and with a preface by Hugh L. Montgomery.Google Scholar
Diamond, H. G. and Steinig, J., An elementary proof of the prime number theorem with a remainder term, Invent. Math. 11 (1970), 199258.CrossRefGoogle Scholar
Elliott, P. D. T. A., Probabilistic number theory. I. Mean-value theorems, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Science], vol. 239 (Springer, Berlin, 1979).Google Scholar
Erdős, P., On a new method in elementary number theory which leads to an elementary proof of the prime number theorem, Proc. Natl. Acad. Sci. USA 35 (1949), 374384.CrossRefGoogle Scholar
Ford, K., Vinogradov’s integral and bounds for the Riemann zeta function, Proc. Lond. Math. Soc. (3) 85 (2002), 565633.CrossRefGoogle Scholar
Friedlander, J. and Iwaniec, H., On Bombieri’s asymptotic sieve, Ann. Sc. Norm. Super. Pisa Cl. Sci. (4) 5 (1978), 719756.Google Scholar
Goldfeld, D. M., The elementary proof of the prime number theorem: an historical perspective, in Number theory (New York, 2003) (Springer, New York, NY, 2004), 179192.Google Scholar
Granville, A., Different approaches to the distribution of prime numbers, Milan J. Math. 78 (2009), 125.Google Scholar
Granville, A. and Soundararajan, K., Decay of mean values of multiplicative functions, Canad. J. Math. 55 (2003), 11911230.CrossRefGoogle Scholar
Granville, A. and Soundararajan, K., Pretentious multiplicative functions and an inequality for the zeta-function, in Anatomy of integers, CRM Proceedings & Lecture Notes, vol. 46 (American Mathematical Society, Providence, RI, 2008), 191197.CrossRefGoogle Scholar
Granville, A. and Soundararajan, K., Multiplicative number theory: the pretentious approach, to appear.Google Scholar
Halász, G., On the distribution of additive and the mean values of multiplicative arithmetic functions, Studia Sci. Math. Hungar. 6 (1971), 211233.Google Scholar
Halász, G., On the distribution of additive arithmetic functions. Collection of articles in memory of Juri Vladimirovi Linnik, Acta Arith. 27 (1975), 143152.CrossRefGoogle Scholar
Halberstam, H. and Richert, H.-E., Sieve methods, London Mathematical Society Monographs, vol. 4 (Academic Press, London, 1974).Google Scholar
Iwaniec, H. and Kowalski, E., Analytic number theory, American Mathematical Society Colloquium Publications, vol. 53 (American Mathematical Society, Providence, RI, 2004).CrossRefGoogle Scholar
Korobov, N. M., Estimates of trigonometric sums and their applications, Uspekhi Mat. Nauk 13 (1958), 185192 (in Russian).Google Scholar
Koukoulopoulos, D., On multiplicative functions which are small on average, Geom. Funct. Anal., to appear, arXiv:1111.2659v3 [math.NT].Google Scholar
Languasco, A. and Zaccagnini, A., A note on Mertens’ formula for arithmetic progressions, J. Number Theory 127 (2007), 3746.CrossRefGoogle Scholar
Montgomery, H. L., A note on the mean values of multiplicative functions, Report no. 17, Institut Mittag-Leffler (1978).Google Scholar
Montgomery, H. L., Ten lectures on the interface between analytic number theory and harmonic analysis, CBMS Regional Conference Series in Mathematics, vol. 84 (American Mathematical Society, Providence, RI, 1994).CrossRefGoogle Scholar
Montgomery, H. L. and Vaughan, R. C., Mean values of multiplicative functions, Period. Math. Hungar. 43 (2001), 199214.CrossRefGoogle Scholar
Montgomery, H. L. and Vaughan, R. C., Multiplicative number theory. I. Classical theory, Cambridge Studies in Advanced Mathematics, vol. 97 (Cambridge University Press, Cambridge, 2007).Google Scholar
Pintz, J., On Siegel’s theorem, Acta Arith. 24 (1974), 543551.CrossRefGoogle Scholar
Pintz, J., Elementary methods in the theory of $L$-functions. I. Hecke’s theorem, Acta Arith. 31 (1976), 5360.CrossRefGoogle Scholar
Selberg, A., An elementary proof of the prime-number theorem, Ann. of Math. (2) 50 (1949), 305313.CrossRefGoogle Scholar
Siegel, C. L., Über die Classenzahl quadratischer Zahlkörper, Acta Arith. 1 (1935), 8386 (in German).CrossRefGoogle Scholar
Tatuzawa, T., On a theorem of Siegel, Jpn. J. Math. 21 (1951), 163178.CrossRefGoogle Scholar
Tenenbaum, G., Introduction à la théorie analytique et probabiliste des nombres, Collection Échelles, third edition (Belin, Paris, 2008).Google Scholar
Titchmarsh, E. C., The theory of the Riemann zeta-function, second edition (The Clarendon Press, Oxford University Press, New York, 1986).Google Scholar
Vinogradov, I. M., A new estimate of the function $\zeta (1+ it)$, Izv. Akad. Nauk SSSR Ser. Mat. 22 (1958), 161164 (in Russian).Google Scholar
Walfisz, A., Weylsche Exponentialsummen in der neueren Zahlentheorie, Mathematische Forschungsberichte, vol. 15 (VEB Deutscher Verlag der Wissenschaften, Berlin, 1963) (in German).Google Scholar
Wirsing, E., Elementare Beweise des Primzahlsatzes mit Restglied. II, J. Reine Angew. Math. 214/215 (1964), 118 (in German).Google Scholar

Altmetric attention score

Full text views

Full text views reflects PDF downloads, PDFs sent to Google Drive, Dropbox and Kindle and HTML full text views.

Total number of HTML views: 0
Total number of PDF views: 193 *
View data table for this chart

* Views captured on Cambridge Core between September 2016 - 14th April 2021. This data will be updated every 24 hours.

You have Access

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Pretentious multiplicative functions and the prime number theorem for arithmetic progressions
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Pretentious multiplicative functions and the prime number theorem for arithmetic progressions
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Pretentious multiplicative functions and the prime number theorem for arithmetic progressions
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *