Skip to main content Accessibility help

Non-contractible periodic orbits in Hamiltonian dynamics on closed symplectic manifolds

  • Viktor L. Ginzburg (a1) and Başak Z. Gürel (a2)


We study Hamiltonian diffeomorphisms of closed symplectic manifolds with non-contractible periodic orbits. In a variety of settings, we show that the presence of one non-contractible periodic orbit of a Hamiltonian diffeomorphism of a closed toroidally monotone or toroidally negative monotone symplectic manifold implies the existence of infinitely many non-contractible periodic orbits in a specific collection of free homotopy classes. The main new ingredient in the proofs of these results is a filtration of Floer homology by the so-called augmented action. This action is independent of capping and, under favorable conditions, the augmented action filtration for toroidally (negative) monotone manifolds can play the same role as the ordinary action filtration for atoroidal manifolds.



Hide All
[Abb01] Abbondandolo, A., Morse theory for Hamiltonian systems, Research Notes in Mathematics, vol. 425 (Chapman & Hall/CRC, Boca Raton, FL, 2001).
[BHP01] Baker, R. C., Harman, G. and Pintz, J., The difference between consecutive primes, II , Proc. Lond. Math. Soc. (3) 83 (2001), 532562.
[Bat15a] Batoreo, M., On hyperbolic points and periodic orbits of symplectomorphisms , J. Lond. Math. Soc. (2) 91 (2015), 249265.
[Bat15b] Batoreo, M., On non-contractible hyperbolic periodic orbits and periodic points of symple ctomorphisms, J. Symplectic Geom., to appear. Preprint (2015), arXiv:1507.04297v2.
[BPS03] Biran, P., Polterovich, L. and Salamon, D., Propagation in Hamiltonian dynamics and relative symplectic homology , Duke Math. J. 119 (2003), 65118.
[BK08] Brunnbauer, M. and Kotschick, D., On hyperbolic cohomology classes, Preprint (2008), arXiv:0808.1482.
[BH01] Burghelea, D. and Haller, S., Non-contractible periodic trajectories of symplectic vector fields, Floer cohomology and symplectic torsion, Preprint (2001), arXiv:math.SG/0104013.
[CMPY83] Chow, S.-N., Mallet-Paret, J. and Yorke, J. A., A periodic orbit index which is a bifurcation invariant , in Geometric dynamics (Rio de Janeiro, 1981), Lecture Notes in Mathematics, vol. 1007 (Springer, Berlin, 1983), 109131.
[CKRTZ12] Collier, B., Kerman, E., Reiniger, B. M., Turmunkh, B. and Zimmer, A., A symplectic proof of a theorem of Franks , Compos. Math. 148 (2012), 10691984.
[Fra92] Franks, J., Geodesics on S 2 and periodic points of annulus homeomorphisms , Invent. Math. 108 (1992), 403418.
[Fra96] Franks, J., Area preserving homeomorphisms of open surfaces of genus zero , New York J. Math. 2 (1996), 119.
[FO99] Fukaya, K. and Ono, K., Arnold conjecture and Gromov–Witten invariant , Topology 38 (1999), 9331048.
[GL00] Gatien, D. and Lalonde, F., Holomorphic cylinders with Lagrangian boundaries and Hamiltonian dynamics , Duke Math. J. 102 (2000), 485511.
[Gin07] Ginzburg, V. L., Coisotropic intersections , Duke Math. J. 140 (2007), 111163.
[Gin10] Ginzburg, V. L., The Conley conjecture , Ann. of Math. (2) 172 (2010), 11271180.
[GG09a] Ginzburg, V. L. and Gürel, B. Z., Action and index spectra and periodic orbits in Hamiltonian dynamics , Geom. Topol. 13 (2009), 27452805.
[GG09b] Ginzburg, V. L. and Gürel, B. Z., On the generic existence of periodic orbits in Hamiltonian dynamics , J. Mod. Dyn. 4 (2009), 595610.
[GG10] Ginzburg, V. L. and Gürel, B. Z., Local Floer homology and the action gap , J. Symplectic Geom. 8 (2010), 323357.
[GG14] Ginzburg, V. L. and Gürel, B. Z., Hyperbolic fixed points and periodic orbits of Hamiltonian diffeomorphisms , Duke Math. J. 163 (2014), 565590.
[GG15] Ginzburg, V. L. and Gürel, B. Z., The Conley conjecture and beyond , Arnold Math. J. 1 (2015), 299337.
[Gro87] Gromov, M., Hyperbolic groups , in Essays in group theory, Mathematical Sciences Research Institute Publications, vol. 8 (Springer, New York, 1987), 75263.
[Gü13] Gürel, B. Z., On non-contractible periodic orbits of Hamiltonian diffeomorphisms , Bull. Lond. Math. Soc. 45 (2013), 12271234.
[Gü14] Gürel, B. Z., Periodic orbits of Hamiltonian systems linear and hyperbolic at infinity , Pacific J. Math. 271 (2014), 159182.
[Hin84] Hingston, N., Equivariant Morse theory and closed geodesics , J. Differential Geom. 19 (1984), 85116.
[HS95] Hofer, H. and Salamon, D. A., Floer homology and Novikov rings , in The Floer memorial volume, Progress in Mathematics, vol. 133 (Birkhäuser, Basel, 1995), 483524.
[HWZ11] Hofer, H., Wysocki, K. and Zehnder, E., Applications of polyfold theory I: The polyfolds of Gromov–Witten theory, Mem. Amer. Math. Soc., to appear. Preprint (2011),arXiv:1107.2097.
[HZ94] Hofer, H. and Zehnder, E., Symplectic invariants and Hamiltonian dynamics (Birkäuser, 1994).
[Kęd09] Kędra, J., Symplectically hyperbolic manifolds , Differential Geom. Appl. 27 (2009), 455463.
[Ker12] Kerman, E., On primes and period growth for Hamiltonian diffeomorphisms , J. Mod. Dyn. 6 (2012), 4158.
[LM89] Lawson, H. B. and Michelsohn, M.-L., Spin geometry, Princeton Mathematical Series, vol. 38 (Princeton University Press, Princeton, NJ, 1989).
[LC06] Le Calvez, P., Periodic orbits of Hamiltonian homeomorphisms of surfaces , Duke Math. J. 133 (2006), 125184.
[LCT15] Le Calvez, P. and Tal, F. A., Forcing theory for transverse trajectories of surface homeomorphisms, Preprint (2015), arXiv:1503.09127.
[LO96] , H. V. and Ono, K., Cup-length estimates for symplectic fixed points , in Contact and symplectic geometry (Cambridge, 1994), Publications of the Newton Institute, vol. 8 (Cambridge University Press, Cambridge, 1996), 268295.
[Lee03] Lee, Y.-J., Non-contractible periodic orbits, Gromov invariants, and Floer-theoretic torsions, Preprint (2003), arXiv:math/0308185.
[LT98] Liu, G. and Tian, G., Floer homology and Arnold conjecture , J. Differential Geom. 49 (1998), 174.
[Lon02] Long, Y., Index theory for symplectic paths with applications, Progress in Mathematics, vol. 207 (Birkhäuser, Basel, 2002).
[MS12] McDuff, D. and Salamon, D., J-holomorphic curves and symplectic topology, American Mathematical Society Colloquium Publications, vol. 52 (American Mathematical Society, Providence, RI, 2012).
[McL12] McLean, M., Local Floer homology and infinitely many simple Reeb orbits , Algebr. Geom. Topol. 12 (2012), 19011923.
[Mos77] Moser, J., Proof of a generalized form of a fixed point theorem due to G. D. Birkhoff , Lecture Notes in Mathematics, vol. 597 (Springer, Berlin–New York, 1977), 464494.
[Nic06] Niche, C. J., Non-contractible periodic orbits of Hamiltonian flows on twisted cotangent bundles , Discrete Contin. Dyn. Syst. 14 (2006), 617630.
[Ols93] Olshanskii, A. Y., On residualing homomorphisms and G-subgroups of hyperbolic groups , Internat. J. Algebra Comput. 3 (1993), 365409.
[Ono95] Ono, K., On the Arnol’d conjecture for weakly monotone symplectic manifolds , Invent. Math. 119 (1995), 519537.
[Par16] Pardon, J., An algebraic approach to virtual fundamental cycles on moduli spaces of pseudo-holomorphic curves , Geom. Topol. 20 (2016), 7791034.
[PS14] Polterovich, L. and Shelukhin, E., Autonomous Hamiltonian flows, Hofer’s geometry and persistence modules, Selecta. Math. (N.S.), to appear. Preprint (2014), arXiv:1412.8277.
[SZ92] Salamon, D. and Zehnder, E., Morse theory for periodic solutions of Hamiltonian systems and the Maslov index , Comm. Pure Appl. Math. 45 (1992), 13031360.
[SW12] Salomão, P. and Weber, J., An almost existence theorem for non-contractible periodic orbits in cotangent bundles , São Paulo J. Math. Sci. 6 (2012), 385394.
[Sha94] Shafarevich, I. R., Basic algebraic geometry 2, schemes and complex manifolds (Springer, Berlin, 1994).
[SS74] Shub, M. and Sullivan, D., A remark on the Lefschetz fixed point formula for differentiable maps , Topology 13 (1974), 189191.
[Tal15] Tal, F. A., On non-contractible periodic orbits for surface homeomorphisms, Ergodic Theory Dynam. Systems, (2015), doi:10.1017/etds.2014.131.
[UZ15] Usher, M. and Zhang, J., Persistent homology and Floer–Novikov theory, Geom. Topol., to appear. Preprint (2015), arXiv:1502.07928.
[Web06] Weber, J., Noncontractible periodic orbits in cotangent bundles and Floer homology , Duke Math. J. 133 (2006), 527568.
[Xue14] Xue, J., Existence of noncontractible periodic orbits of Hamiltonian system separating two Lagrangian tori on $T^{\ast }\mathbb{T}^{n}$ with application to non convex Hamiltonian systems, Preprint (2014), arXiv:1408.5193.
MathJax is a JavaScript display engine for mathematics. For more information see


MSC classification

Non-contractible periodic orbits in Hamiltonian dynamics on closed symplectic manifolds

  • Viktor L. Ginzburg (a1) and Başak Z. Gürel (a2)


Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.