Skip to main content Accessibility help
×
Home

Motohashi’s fourth moment identity for non-archimedean test functions and applications

  • Valentin Blomer (a1), Peter Humphries (a2), Rizwanur Khan (a3) and Micah B. Milinovich (a4)

Abstract

Motohashi established an explicit identity between the fourth moment of the Riemann zeta function weighted by some test function and a spectral cubic moment of automorphic $L$ -functions. By an entirely different method, we prove a generalization of this formula to a fourth moment of Dirichlet $L$ -functions modulo $q$ weighted by a non-archimedean test function. This establishes a new reciprocity formula. As an application, we obtain sharp upper bounds for the fourth moment twisted by the square of a Dirichlet polynomial of length $q^{1/4}$ . An auxiliary result of independent interest is a sharp upper bound for a certain sixth moment for automorphic $L$ -functions, which we also use to improve the best known subconvexity bounds for automorphic $L$ -functions in the level aspect.

Copyright

Footnotes

Hide All

The first author is supported in part by DFG grant BL 915/2-2. The second author is supported by the European Research Council grant agreement 670239. The third author is supported by the Simons Foundation (award 630985).

Footnotes

References

Hide All
[BBLR16]Bettin, S., Bui, H. M., Li, X. and Radziwiłł, M., A quadratic divisor problem and moments of the Riemann zeta-function, Preprint (2016), arXiv:1609.02539.
[BHM07]Blomer, V., Harcos, G. and Michel, P., Bounds for modular L-functions in the level aspect, Ann. Sci. École Norm. Supér. 40 (2007), 697740.
[BK19a]Blomer, V. and Khan, R., Uniform subconvexity and symmetry breaking reciprocity, J. Funct. Anal. 276 (2019), 23152358.
[BK19b]Blomer, V. and Khan, R., Twisted moments of L-functions and spectral reciprocity, Duke Math. J. 168 (2019), 11091177.
[BM15]Blomer, V. and Milićević, D., The second moment of twisted modular L-functions, Geom. Funct. Anal. 25 (2015), 453516.
[CI00]Conrey, J. B. and Iwaniec, H., The cubic moment of central values of automorphic L-functions, Ann. of Math. (2) 151 (2000), 11751216.
[DI82]Deshouillers, J.-M. and Iwaniec, H., Kloosterman sums and Fourier coefficients of cusp forms, Invent. Math. 70 (1982), 219288.
[DFI94]Duke, W., Friedlander, J. B. and Iwaniec, H., A quadratic divisor problem, Invent. Math. 115 (1994), 209217.
[DFI02]Duke, W., Friedlander, J. B. and Iwaniec, H., The subconvexity problem for Artin L-functions, Invent. Math. 149 (2002), 489577.
[FI92]Friedlander, J. and Iwaniec, H., A mean-value theorem for character sums, Michigan Math. J. 39 (1992), 153159.
[GR07]Gradshteyn, I. S. and Ryzhik, I. M., Table of integrals, series, and products, seventh edition, eds Jeffrey, A. and Zwillinger, D. (Academic Press, Burlington, MA, 2007).
[HM06]Harcos, G. and Michel, P., The subconvexity problem for Rankin–Selberg L-functions and equidistribution of Heegner points. II, Invent. Math. 163 (2006), 581655.
[HWW04]Harman, G., Watt, N. and Wong, K., A new mean-value result for Dirichlet L-functions and polynomials, Q. J. Math. 55 (2004), 307324.
[Hea78]Heath-Brown, D. R., The twelfth power moment of the Riemann-function, Q. J. Math. 29 (1978), 443462.
[Hou16]Hough, R., The angle of large values of L-functions, J. Number Theory 167 (2016), 353393.
[HY10]Hughes, C. P. and Young, M. P., The twisted fourth moment of the Riemann zeta function, J. Reine Angew. Math. 641 (2010), 203236.
[Ivi01]Ivić, A., On sums of Hecke series in short intervals, J. Théor. Nombres Bordeaux 13 (2001), 453468.
[KY17]Kıral, E. M. and Young, M. P., The fifth moment of modular L-functions, Preprint (2017), arXiv:1701.07507.
[KY19]Kıral, E. M. and Young, M. P., Kloosterman sums and Fourier coefficients of Eisenstein series, Ramanujan J. 49 (2019), 391409.
[MV10]Michel, P. and Venkatesh, A., The subconvexity problem for GL2, Publ. Math. Inst. Hautes Études Sci. 111 (2010), 171271.
[Mot96]Motohashi, Y., The Riemann zeta-function and the Hecke congruence subgroups, in Analytic number theory, Sūrikaisekikenkyūsho Kōkyōroku, vol. 958 (Research Institute for Mathematical Sciences, Kyoto University, 1996), 166177.
[Mot97]Motohashi, Y., Spectral theory of the Riemann zeta-function, Cambridge Tracts in Mathematics, vol. 127 (Cambridge University Press, Cambridge, 1997).
[Nel19]Nelson, P. D., Eisenstein series and the cubic moment for PGL(2), Preprint (2019), arXiv:1911.06310.
[Ogg69]Ogg, A., On the eigenvalues of Hecke operators, Math. Ann. 179 (1969), 101108.
[Wat95]Watt, N., Kloosterman sums and a mean value for Dirichlet polynomials, J. Number Theory 53 (1995), 179210.
[Wat08]Watt, N., Bounds for a mean value of character sums, Int. J. Number Theory 4 (2008), 249293.
[You19]Young, M. P., Explicit calculations with Eisenstein series, J. Number Theory 199 (2019), 148.
[Zac19a]Zacharias, R., Mollification of the fourth moment of Dirichlet L-functions, Acta Arith. 191 (2019), 201257.
[Zac19b]Zacharias, R., Periods and reciprocity I, Int. Math. Res. Not. IMRN (2019), rnz100, https://doi.org/10.1093/imrn/rnz100.
MathJax
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.

Keywords

MSC classification

Motohashi’s fourth moment identity for non-archimedean test functions and applications

  • Valentin Blomer (a1), Peter Humphries (a2), Rizwanur Khan (a3) and Micah B. Milinovich (a4)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.