Skip to main content Accessibility help
×
Home
Hostname: page-component-684bc48f8b-vgwqb Total loading time: 1.623 Render date: 2021-04-12T05:13:33.385Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": false, "newCiteModal": false, "newCitedByModal": true }

Non-vanishing of class group L-functions for number fields with a small regulator

Published online by Cambridge University Press:  17 December 2020

Ilya Khayutin
Affiliation:
Mathematics Department, Northwestern University, 2033 Sheridan Road, Evanston, IL 60208, USA khayutin@northwestern.edu
Corresponding
E-mail address:

Abstract

Let $E/\mathbb {Q}$ be a number field of degree $n$. We show that if $\operatorname {Reg}(E)\ll _n |\!\operatorname{Disc}(E)|^{1/4}$ then the fraction of class group characters for which the Hecke $L$-function does not vanish at the central point is $\gg _{n,\varepsilon } |\!\operatorname{Disc}(E)|^{-1/4-\varepsilon }$. The proof is an interplay between almost equidistribution of Eisenstein periods over the toral packet in $\mathbf {PGL}_n(\mathbb {Z})\backslash \mathbf {PGL}_n(\mathbb {R})$ associated to the maximal order of $E$, and the escape of mass of the torus orbit associated to the trivial ideal class.

Type
Research Article
Copyright
© The Author(s) 2020

Access options

Get access to the full version of this content by using one of the access options below.

References

Balasubramanian, R. and Kumar Murty, V., Zeros of Dirichlet $L$-functions, Ann. Sci. Éc. Norm. Supér. (4) 25 (1992), 567615.Google Scholar
Blanksby, P. E. and Montgomery, H. L., Algebraic integers near the unit circle, Acta Arith. 18 (1971), 355369.Google Scholar
Blomer, V., Non-vanishing of class group $L$-functions at the central point, Ann. Inst. Fourier (Grenoble) 54 (2004), 831847.Google Scholar
Blomer, V., Harcos, G. and Michel, P., Bounds for modular $L$-functions in the level aspect, Ann. Sci. Éc. Norm. Supér. (4) 40 (2007), 697740.Google Scholar
Bombieri, E. and Gubler, W., Heights in diophantine geometry, New Mathematical Monographs, vol. 4 (Cambridge University Press, Cambridge, 2006).Google Scholar
Burgess, D. A., On character sums and $L$-series. II, Proc. Lond. Math. Soc. (3) 13 (1963), 524536.Google Scholar
Dimitrov, V., A proof of the Schinzel–Zassenhaus conjecture on polynomials, Preprint (2019), arXiv:1912.12545.Google Scholar
Dobrowolski, E., On a question of Lehmer and the number of irreducible factors of a polynomial, Acta Arith. 34 (1979), 391401.Google Scholar
Duke, W., Number fields with large class group, in Number theory, CRM Proceedings and Lecture Notes, vol. 36 (American Mathematical Society, Providence, RI, 2004), 117126.Google Scholar
Duke, W., Friedlander, J. B. and Iwaniec, H., The subconvexity problem for Artin $L$-functions, Invent. Math. 149 (2002), 489577.Google Scholar
Einsiedler, M., Lindenstrauss, E., Michel, P. and Venkatesh, A., Distribution of periodic torus orbits on homogeneous spaces, Duke Math. J. 148 (2009), 119174.Google Scholar
Einsiedler, M., Lindenstrauss, E., Michel, P. and Venkatesh, A., Distribution of periodic torus orbits and Duke's theorem for cubic fields, Ann. of Math. (2) 173 (2011), 815885.Google Scholar
Epstein, P., Zur Theorie allgemeiner Zetafunktionen. II, Math. Ann. 63 (1906), 205216.Google Scholar
Fröhlich, A., Artin root numbers and normal integral bases for quaternion fields, Invent. Math. 17 (1972), 143166.Google Scholar
Hecke, E., Eine neue Art von Zetafunktionen und ihre Beziehungen zur Verteilung der Primzahlen, Math. Z. 6 (1920), 1151.Google Scholar
Iwaniec, H. and Sarnak, P., The non-vanishing of central values of automorphic $L$-functions and Landau–Siegel zeros, Israel J. Math. 120 (2000), 155177.Google Scholar
Katz, N. M. and Sarnak, P., Random matrices, Frobenius eigenvalues, and monodromy, American Mathematical Society Colloquium Publications, vol. 45 (American Mathematical Society, Providence, RI, 1999).Google Scholar
Luo, W., Rudnick, Z. and Sarnak, P., On Selberg's eigenvalue conjecture, Geom. Funct. Anal. 5 (1995), 387401.Google Scholar
Luo, W., Rudnick, Z. and Sarnak, P., On the generalized Ramanujan conjecture for ${\rm GL}(n)$, in Automorphic forms, automorphic representations, and arithmetic (Fort Worth, TX, 1996), Proceedings of Symposia in Pure Mathematics, vol. 66 (American Mathematical Society, Providence, RI, 1999), 301310.Google Scholar
Michel, P. and Venkatesh, A., Heegner points and non-vanishing of Rankin/Selberg $L$-functions, in Analytic number theory, Clay Mathematics Proceedings, vol. 7 (American Mathematical Society, Providence, RI, 2007), 169183.Google Scholar
Rademacher, H., On the Phragmén–Lindelöf theorem and some applications, Math. Z. 72 (1959–1960), 192204.Google Scholar
Sarnak, P., Shin, S. W. and Templier, N., Families of $L$-functions and their symmetry, in Families of automorphic forms and the trace formula, Simons Symposium (Springer, Cham, 2016), 531578.Google Scholar
Shankar, A., Södergren, A. and Templier, N., Sato–Tate equidistribution of certain families of Artin $L$-functions, Forum Math. Sigma 7 (2019), e23.Google Scholar
Soundararajan, K., Nonvanishing of quadratic Dirichlet $L$-functions at $s=\frac {1}{2}$, Ann. of Math. (2) 152 (2000), 447488.Google Scholar
Soundararajan, K., Weak subconvexity for central values of $L$-functions, Ann. of Math. (2) 172 (2010), 14691498.Google Scholar
Stewart, C. L., Algebraic integers whose conjugates lie near the unit circle, Bull. Soc. Math. France 106 (1978), 169176.Google Scholar
Terras, A. A., Bessel series expansions of the Epstein zeta function and the functional equation, Trans. Amer. Math. Soc. 183 (1973), 477486.Google Scholar
Terras, A., The minima of quadratic forms and the behavior of Epstein and Dedekind zeta functions, J. Number Theory 12 (1980), 258272.Google Scholar
Wielonsky, F., Séries d'Eisenstein, intégrales toroïdales et une formule de Hecke, Enseign. Math. 31 (1985), 93135.Google Scholar

Full text views

Full text views reflects PDF downloads, PDFs sent to Google Drive, Dropbox and Kindle and HTML full text views.

Total number of HTML views: 32
Total number of PDF views: 40 *
View data table for this chart

* Views captured on Cambridge Core between 17th December 2020 - 12th April 2021. This data will be updated every 24 hours.

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Non-vanishing of class group L-functions for number fields with a small regulator
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Non-vanishing of class group L-functions for number fields with a small regulator
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Non-vanishing of class group L-functions for number fields with a small regulator
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *