[1]Agarwal, P. K., Apfelbaum, R., Purdy, G. and Sharir, M. (2007) Similar simplices in a *d*-dimensional point set. In *Proc. 23rd ACM Symposium on Computational Geometry*, pp. 232–238.

[2]Agarwal, P. K., Matoušek, J. and Sharir, M. (2013) On range searching with semialgebraic sets~II. SIAM J. Comput. 42 2039–2062.

[3]Agarwal, P., Nevo, E., Pach, J., Pinchasi, R., Sharir, M. and Smorodinsky, S. (2004) Lenses in arrangements of pseudocircles and their applications. J. Assoc. Comput. Mach. 51 139–186.

[4]Akutsu, T., Tamaki, H. and Tokuyama, T. (1998) Distribution of distances and triangles in a point set and algorithms for computing the largest common point sets. Discrete Comput. Geom. 20 307–331.

[5]Alon, N. (1995) Tools from higher algebra. In Handbook of Combinatorics, Vols~1, 2, Elsevier, pp. 1749–1783.

[6]Apfelbaum, R. and Sharir, M. (2011) Non-degenerate spheres in three dimensions. Combin. Probab. Comput. 20 503–512.

[7]Aronov, B., Koltun, V. and Sharir, M. (2005) Incidences between points and circles in three and higher dimensions, Discrete Comput. Geom. 33 185–206.

[8]Aronov, B. and Sharir, M. (2002) Cutting circles into pseudo-segments and improved bounds for incidences. Discrete Comput. Geom. 28 475–490.

[9]Basu, S. and Sombra, M. Polynomial partitioning on varieties and point–hypersurface incidences in four dimensions. arXiv:1406.2144.

[10]Beauville, A. (1996) Complex Algebraic Surfaces, second edition, Vol. 34 of *London Mathematical Society Student Texts*, Cambridge University Press.

[11]Bochnak, J., Coste, M. and Roy, M. (1998) Real Algebraic Geometry, Springer.

[12]Brass, P. (2002) Combinatorial geometry problems in pattern recognition. Discrete Comput. Geom. 28 495–510.

[13]Chazelle, B., Edelsbrunner, H., Guibas, L. J., Sharir, M. and Stolfi, J. (1996) Lines in space: Combinatorics and algorithms. Algorithmica 15 428–447.

[14]Cox, D., Little, J. and O'Shea, D. (2004) Using Algebraic Geometry, second edition, Springer.

[15]Cox, D., Little, J. and O'Shea, D. (2007) Ideals, Varieties, and Algorithms: An Introduction to Computational Algebraic Geometry and Commutative Algebra, third edition, Springer.

[16]Elekes, G., Kaplan, H. and Sharir, M. (2011) On lines, joints, and incidences in three dimensions. J. Combin. Theory Ser. A 118 962–977.

[17]Elekes, G. and Sharir, M. (2011) Incidences in three dimensions and distinct distances in the plane. Combin. Probab. Comput. 20 571–608.

[18]Erdős, P. (1946) On sets of distances of *n* points. Amer. Math. Monthly 53 248–250.

[19]Fox, J., Pach, J., Sheffer, A., Suk, A. and Zahl, J. A semi-algebraic version of Zarankiewicz's problem, *arXiv:1407.5705*.

[20]Fuchs, D. and Tabachnikov, S. (2007) Mathematical Omnibus: Thirty Lectures on Classical Mathematics, AMS.

[21]Fulton, W. (1998) Intersection Theory, Springer.

[22]Guth, L. Distinct distance estimates and low degree polynomial partitioning. arXiv:1404.2321.

[23]Guth, L. and Katz, N. H. (2010) Algebraic methods in discrete analogs of the Kakeya problem. Adv. Math. 225 2828–2839.

[24]Guth, L. and Katz, N. H. On the Erdős distinct distances problem in the plane. *Ann. of Math.*, to appear. arXiv:1011.4105.

[25]Harris, J. (1992) Algebraic Geometry: A First Course, Springer.

[26]Hartshorne, R. (1983) Algebraic Geometry, Springer.

[27]Hartshorne, R. (2000) Geometry: Euclid and Beyond, Springer.

[28]Hwang, J. M. (2005) A bound on the number of curves of a given degree through a general point of a projective variety. Compositio Math. 141 703–712.

[29]Kaplan, H., Matoušek, J., Safernová, Z. and Sharir, M. (2012) Unit distances in three dimensions. Combin. Probab. Comput. 21 597–610.

[30]Kaplan, H., Matoušek, J. and Sharir, M. (2012) Simple proofs of classical theorems in discrete geometry via the Guth–Katz polynomial partitioning technique. Discrete Comput. Geom. 48 499–517.

[31]Kaplan, H., Sharir, M. and Shustin, E. (2010) On lines and joints. Discrete Comput. Geom. 44 838–843.

[32]Landsberg, J. M. (1999) Is a linear space contained in a submanifold? On the number of derivatives needed to tell. J. Reine Angew. Math. 508 53–60.

[33]Landsberg, J. M. (2003) Lines on projective varieties. J. Reine Angew. Math. 562 1–3.

[34]Marcus, A. and Tardos, G. (2006) Intersection reverse sequences and geometric applications. J. Combin. Theory Ser. A 113 675–691.

[35]Matoušek, J. (2002) Lectures on Discrete Geometry, Springer.

[36]Milnor, J. (1964) On the Betti numbers of real varieties. Proc. Amer. Math. Soc. 15 275–280.

[37]Miranda, R. (1995) Algebraic Curves and Riemann Surfaces, Vol. 5 of *Graduate Studies in Mathematics*, AMS.

[38]Nilov, F. and Skopenkov, M. (2013) A surface containing a line and a circle through each point is a quadric. Geom. Dedicata 163 301–310.

[39]Pach, J. and Sharir, M. (2004) Geometric incidences. In Towards a Theory of Geometric Graphs (Pach, J., ed.), Vol. 342 of *Contemporary Mathematics*, AMS, pp. 185–223.

[40]Quilodrán, R. (2010) The joints problem in *R*^{n}. SIAM J. Discrete Math. 23 2211–2213.

[41]Roy, M.-F. and Vorobjov, N. (2002) The complexification and degree of a semi-algebraic set. Math. Z. 239 131–142.

[42]Salmon, G. (1915) A Treatise on the Analytic Geometry of Three Dimensions, Vol. 2, fifth edition, Hodges, Figgis and Co. Ltd., Dublin.

[43]Sard, A. (1942) The measure of the critical values of differentiable maps. Bull. Amer. Math. Soc. 48 883–890.

[44]Sharir, M. and Solomon, N. (2014) Incidences between points and lines in four dimensions. In *Proc. 30th ACM Symposium on Computational Geometry*, 189–197.

[45]Solymosi, J. and Tao, T. (2012) An incidence theorem in higher dimensions. Discrete Comput. Geom. 48 255–280.

[46]Székely, L. (1997) Crossing numbers and hard Erdős problems in discrete geometry. Combin. Probab. Comput. 6 353–358.

[47]Thom, R. (1965) Sur l'homologie des variétés algebriques réelles. In Differential and Combinatorial Topology (Cairns, S. S., ed.), Princeton University Press, pp. 255–265.

[48]Warren, H. E. (1968) Lower bound for approximation by nonlinear manifolds. Trans. Amer. Math. Soc. 133 167–178.

[49]Whitney, H. (1957) Elementary structure of real algebraic varieties. Ann. of Math. 66 545–556.

[50]Zahl, J. (2013) An improved bound on the number of point–surface incidences in three dimensions. Contrib. Discrete Math. 8 100–121.

[51]Zahl, J. A Szemerédi–Trotter type theorem in ℝ^{4}. arXiv:1203.4600.