Skip to main content Accessibility help

Ewens Sampling and Invariable Generation



We study the number of random permutations needed to invariably generate the symmetric group Sn when the distribution of cycle counts has the strong α-logarithmic property. The canonical example is the Ewens sampling formula, for which the special case α = 1 corresponds to uniformly random permutations.

For strong α-logarithmic measures and almost every α, we show that precisely ⌈(1−αlog2)−1⌉ permutations are needed to invariably generate Sn with asymptotically positive probability. A corollary is that for many other probability measures on Sn no fixed number of permutations will invariably generate Sn with positive probability. Along the way we generalize classic theorems of Erdős, Tehran, Pyber, Łuczak and Bovey to permutations obtained from the Ewens sampling formula.



Hide All
[1] Apostol, T. M. (1976) Introduction to Analytic Number Theory, Undergraduate Texts in Mathematics, Springer.
[2] Arratia, R., Barbour, A. and Tavaré, S. (1992) Poisson process approximations for the Ewens sampling formula. Ann. Appl. Probab. 2 519535.
[3] Arratia, R., Barbour, A. and Tavaré, S. (2000) Limits of logarithmic combinatorial structures. Ann. Probab. 28 16201644.
[4] Arratia, R., Barbour, A. and Tavaré, S. (2016) Exploiting the Feller coupling for the Ewens sampling formula. Statist. Sci. 31 2729.
[5] Arratia, R. and Tavaré, S. (1992) The cycle structure of random permutations. Ann. Probab. 20 15671591.
[6] Arratia, R. and Tavaré, S. (1994) Independent process approximations for random combinatorial structures. Adv. Math. 104 90154.
[7] Babai, L. (1981) On the order of uniprimitive permutation groups. Ann. of Math. 113 553568.
[8] Betz, V., Ueltschi, D. and Velenik, Y. (2011) Random permutations with cycle weights. Ann. Appl. Probab. 21 312331.
[9] Bovey, J. (1980) The probability that some power of a permutation has small degree. Bull. London Math. Soc. 12 4751.
[10] Crane, H. (2016) The ubiquitous Ewens sampling formula. Statist. Sci. 31 119.
[11] Crane, H. (2016) Rejoinder: The ubiquitous Ewens sampling formula. Statist. Sci. 31 3739.
[12] Davenport, J. and Smith, G. (2000) Fast recognition of alternating and symmetric Galois groups. J. Pure Appl. Algebra 153 1725.
[13] Dixon, J. D. (1992) Random sets which invariably generate the symmetric group. Discrete Math. 105 2539.
[14] Eberhard, S., Ford, K. and Green, B. (2016) Permutations fixing a k-set. Internat. Math. Res. Notices 2016 67136731.
[15] Eberhard, S., Ford, K. and Green, B. (2017) Invariable generation of the symmetric group. Duke Math. J. 166 15731590.
[16] Ercolani, N. M. and Ueltschi, D. (2014) Cycle structure of random permutations with cycle weights. Random Struct. Alg. 44 109133.
[17] Erdős, P. and Turán, P. (1967) On some problems of a statistical group-theory, II. Acta Math. Hungar. 18 151163.
[18] Euler, L. (1737) Observationes circa series infinitas. Commentarii Academiae Scientarum Petropolitanae 9 160188.
[19] Ewens, W. (1972) The sampling theory of selectively neutral alleles. Theoret. Popul. Biol. 3 87112.
[20] Feller, W. (1945) The fundamental limit theorems in probability. Bull. Amer. Math. Soc. 51 800832.
[21] Gladkich, A. and Peled, R. (2018) On the cycle structure of Mallows permutations. Ann. Probab. 46 11141169. doi: 10.1214/17-AOP1202.
[22] Granville, A. (2008) The anatomy of integers and permutations. Preprint.
[23] Guralnick, R. and Magaard, K. (1998) On the minimal degree of a primitive permutation group. J. Algebra 207 127145.
[24] Heintz, J. (1986) On polynomials with symmetric Galois group which are easy to compute. Theoret. Comput. Sci. 47 99105.
[25] Kenyon, R., Kral, D., Radin, C. and Winkler, P. (2015) Permutations with fixed pattern densities. arXiv:1506.02340
[26] Łuczak, T. and Pyber, L. (1993) On random generation of the symmetric group. Combin. Probab. Comput. 2 505512.
[27] Maier, H. and Tenenbaum, G. (1984) On the set of divisors of an integer. Inventio. Math. 76 121128.
[28] Mallows, C. L. (1957) Non-null ranking models, I. Biometrika 44 114130.
[29] Mukherjee, S. (2016) Fixed points and cycle structure of random permutations. Electron. J. Probab. 21 #40.
[30] Musser, D. R. (1978) On the efficiency of a polynomial irreducibility test. J. Assoc. Comput. Mach. 25 271282.
[31] Pemantle, R., Peres, Y. and Rivin, I. (2016) Four random permutations conjugated by an adversary generate Sn with high probability. Random Struct. Alg. 49 409428.
[32] van der Waerden, B. (1934) Die Seltenheit der Gleichungen mit Affekt. Math. Ann. 109 1316.



Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed