Hostname: page-component-7479d7b7d-rvbq7 Total loading time: 0 Render date: 2024-07-11T02:40:25.587Z Has data issue: false hasContentIssue false

Formation at 300°C of a high-temperature disilicate from hydrated lutetium in a layered aluminosilicate

Published online by Cambridge University Press:  09 July 2018

M. A. Castro
Affiliation:
Departamento de Química Inorgánica, Instituto de Ciencia de Materiales, Universidad de Sevilla, Consejo Superior de Investigaciones Científicas, P.O. Box 874, Sevilla, Spain
M. D. Alba
Affiliation:
Departamento de Química Inorgánica, Instituto de Ciencia de Materiales, Universidad de Sevilla, Consejo Superior de Investigaciones Científicas, P.O. Box 874, Sevilla, Spain
R. Alvero
Affiliation:
Departamento de Química Inorgánica, Instituto de Ciencia de Materiales, Universidad de Sevilla, Consejo Superior de Investigaciones Científicas, P.O. Box 874, Sevilla, Spain
A. I. Becerro
Affiliation:
Departamento de Química Inorgánica, Instituto de Ciencia de Materiales, Universidad de Sevilla, Consejo Superior de Investigaciones Científicas, P.O. Box 874, Sevilla, Spain
A. Muñoz-Paez
Affiliation:
Departamento de Química Inorgánica, Instituto de Ciencia de Materiales, Universidad de Sevilla, Consejo Superior de Investigaciones Científicas, P.O. Box 874, Sevilla, Spain
J. M. Trillo
Affiliation:
Departamento de Química Inorgánica, Instituto de Ciencia de Materiales, Universidad de Sevilla, Consejo Superior de Investigaciones Científicas, P.O. Box 874, Sevilla, Spain

Abstract

The interaction between interlamellar Lu(III) cations and the layered silicate structure has been studied by means of MAS-NMR, XRD and EDX. Irreversible fixation of exchangeable Lu(III) cations upon hydrothermal treatment at 300°C of Lu-saturated montmorillonite is reported, through the formation of the crystalline phase Lu2Si2O7. It is shown that the lowest temperature previously described for this reaction, 400°C, does not indicate a thermodynamic boundary. This basic solid-state finding is relevant for some clay applications such as those related to the safety of nuclear waste repositories with engineering barriers.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alvero, R., Alba, M.D., Castro, M.A. & Trillo, J.M. (1994) Reversible migration of lithium in montmorillonites. J. Phys. Chem. 98, 78487853.CrossRefGoogle Scholar
Beall, G.W., Ketelle, B.H., Haire, R.G. & O'Kelley, G.D. (1979) Pp. 201-213 in: Radioactive Waste in Geological Storage (Fried, S., editor), ACS Symposium Series 100, American Chemical Society, Washington DC, USA.Google Scholar
Bucher, F. & Müller-Vonmoos, M. (1989) Bentonite as a containment barrier for the disposal of highly radioactive waste. Appl. Clay Sci. 4, 157–177.Google Scholar
Castro, M.A. (1992) Mecanismos de interacci6n de cationes mono-y multivalentes con la red de silicatos laminares dioctaddricos. PhD thesis, Univ. Seville, Spain.Google Scholar
Engelhardt, G. & Michel, D. (1987) High-Resolution Solid-State NMR of Silicates and Zeolites, pp. 162-163. John Wiley & Sons, New York.Google Scholar
Felsche, J. (1973) The crystal chemistry of the rare-eart. silicatesv∼truct. Bonding 13, 99195.CrossRefGoogle Scholar
Figueras, F. (1988) Pillared clays as catalysts. Catal. Rev.-Sci. Eng. 30, 457499.Google Scholar
Mägi, M., Lippmaa, E., Samoson, A., Engelhardt, G. & Grimmer, A.R. (1984) 29Si MAS-NMR of silicates. J. Phys. Chem. 88, 15181525.Google Scholar
Miller, S.E., Heath, G.R. & González, R.D. (1982) Effects of temperature on the sorption of lanthanides by montmorillonite. Clays Clay Miner. 30, 11l – 116.Google Scholar
Muñoz-Paez, A., Alba, M.D., Alvero, R., Castro, M.A. & Trillo, J.M. (1993) Study of lanthanum local structure in montmorillonite. Jpn. J. Appl. Phys. 32 (Suppl. 32-2), 779-781.Google Scholar
Muñoz-Paez, A., Alba, M.D., Castro, M.A., Alvero, R. & Trillo, J.M. (1994) Geometric structures of lanthanide ions within layered clays as determined by EXAFS. From the Lu(III) hydrate to the disilicate. J. Phys. Chem. 98, 98509860.Google Scholar
Tennakoon, D.T., Thomas, J.M., Jones, W., Carpenter, T.A. & Ramdas, S. (1986) Characterization of clays and clay-organic systems. J. Chem. Soc. Faraday Trans. I 82, 545562.CrossRefGoogle Scholar
Trillo, J.M., Alba, M.D., Alvero, R. & Castro, M.A. (1993) Re-expansion of collapsed Li-montmorillonites. Evidence on the location of Li+ ions. J. Chem. Soc., Chem. Commun. 1809-1811.CrossRefGoogle Scholar
Trillo, J.M., Alba, M.D., Alvero, R., Castro, M.A., Muñoz-Paez, A. & Poyato, J. (1994) Interaction of multivalent cations with layered clays: generation of lutetium disilicate upon hydrothermal treatment of Lu-montmorillonite. Inorg.Chem. 33, 3861–3862.Google Scholar