Skip to main content Accessibility help
×
Home

Small Flag Complexes with Torsion

  • Michał Adamaszek (a1)

Abstract

We classify flag complexes on at most 12 vertices with torsion in the first homology group. The result is moderately computer-aided.

As a consequence we confirm a folklore conjecture that the smallest poset whose order complex is homotopy equivalent to the real projective plane (and also the smallest poset with torsion in the first homology group) has exactly 13 elements.

    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Small Flag Complexes with Torsion
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Small Flag Complexes with Torsion
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Small Flag Complexes with Torsion
      Available formats
      ×

Copyright

References

Hide All
[1] Barmak, J. A., Star clusters in independence complexes of graphs. Adv. Math. 241 (2013), 3357. http://dx.doi.org/10.1016/j.aim.2013.03.016
[2] Barmak, J. A., Algebraic topology of finite topological spaces and applications. Lecture Notes in Mathematics, 2032, Springer-Verlag, Heidelberg, 2011.
[3] Barmak, J. A. and Minian, E. G., Minimal finite models. J. Homotopy Relat. Struct. 2 (2007), no. 1, 127140.
[4] Computational Homology Project, http://chomp.rutgers.edu/
[5] Engström, A., Independence complexes of claw-free graphs. European J. Combin. 29, no. 1, 234241. http://dx.doi.org/10.1016/j.ejc.2006.09.007
[6] Gawrilow, E. and Joswig, M., polymake: a framework for analyzing convex polytopes. In: Polytopes—combinatorics and computation (Oberwolfach, 1997), DMV Sem., 29, Birkhäuser, Basel, 2000, pp. 4373.
[7] Hardie, K. A., Vermeulen, J. J. C., and Witbooi, P. J., A nontrivial pairing of finite T0 spaces. Topology Appl. 125 (2002), no. 3, 533542. http://dx.doi.org/10.1016/S0166-8641(01)00298-X
[8] Katzman, M., Characteristic-independence of Betti numbers of graph ideals. J. Combin. Theory Ser. A 113 (2006), no. 3, 435454. http://dx.doi.org/10.1016/j.jcta.2005.04.005
[9] May, J. P., Lecture notes about finite spaces for REU. 2003, http://math.uchicago.edu/_may/finite.html
[10] McKay, B. D., The Nauty graph automorphism package. http://cs.anu.edu.au/_bdm/nauty/
[11] The On-Line Encyclopedia of Integer Sequences, http://oeis.org
[12] Weng, D., On minimal finite models. a REU paper. http://www.math.uchicago.edu/_may/VIGRE/VIGRE2010/REUPapers/Weng.pdf
MathJax
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed