Skip to main content Accessibility help
×
Home

Interpolation of Morrey Spaces on Metric Measure Spaces

  • Yufeng Lu (a1), Dachun Yang (a1) and Wen Yuan (a2)

Abstract

In this article, via the classical complex interpolation method and some interpolation methods traced to Gagliardo, the authors obtain an interpolation theorem for Morrey spaces on quasimetric measure spaces, which generalizes some known results on ${{\mathbb{R}}^{n}}$ .

    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Interpolation of Morrey Spaces on Metric Measure Spaces
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Interpolation of Morrey Spaces on Metric Measure Spaces
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Interpolation of Morrey Spaces on Metric Measure Spaces
      Available formats
      ×

Copyright

References

Hide All
[1] Adams, D. R. and Xiao, J., Nonlinear potential analysis on Morrey spaces and their capacities. Indiana Univ. Math. J. 53 (2004), 16291663.
[2] Adams, D. R. and Xiao, J., Morrey potentials and harmonic maps. Comm. Math. Phys. 308 (2011), 439456. http://dx.doi.org/10.1007/s00220-011-1319-5
[3] Adams, D. R. and Xiao, J., Regularity of Morrey commutators. Trans. Amer. Math. Soc. 364 (2012), 48014818. http://dx.doi.org/10.1090/S0002-9947-2012-05595-4
[4] Adams, D. R. and Xiao, J., Morrey spaces in harmonic analysis. Ark. Mat. 50 (2012), 201230. http://dx.doi.org/10.1007/s11512-010-0134-0
[5] Blasco, O., Ruiz, A., and Vega, L., Non-interpolation in Morrey–Campanato and block spaces. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 28 (1999), 3140.
[6] Brudnyĭ, Yu. A. and Krugljak, N. Ya., Interpolation Functors and Interpolation Spaces. Vol. I, North-Holland Publishing Co., Amsterdam, 1991.
[7] Calderón, A.-P., Intermediate spaces and interpolation, the complex method. Studia Math. 24 (1964), 113190.
[8] Campanato, S. and Murthy, M. K. V., Una generalizzazione del teorema di Riesz–Thorin. Ann. Scuola Norm. Sup. Pisa (3) 19 (1965), 87100.
[9] Coifman, R. R. and Weiss, G., Analyse Harmonique Non-Commutative sur Certains Espaces Homogçnes. Lecture Notes in Math. 242, Springer-Verlag, Berlin–New York, 1971.
[10] Coifman, R. R. and Weiss, G., Extensions of Hardy spaces and their use in analysis. Bull. Amer. Math. Soc. 83 (1977), 569645. http://dx.doi.org/10.1090/S0002-9904-1977-14325-5
[11] Frazier, M. and Jawerth, B., A discrete transform and decompositions of distribution spaces. J. Funct. Anal. 93 (1990), 34170. http://dx.doi.org/10.1016/0022-1236(90)90137-A
[12] Gagliardo, E., Caratterizzazione costruttiva di tutti gli spazi di interpolazione tra spazi di Banach. Symposia Mathematica, Vol. II (INDAM, Rome, 1968), Academic Press, London, 1969, 95106.
[13] Gustavsson, J., On interpolation of weighted Lp-spaces and Ovchinnikov's theorem. Studia Math. 72 (1982), 237251.
[14] Gustavsson, J. and Peetre, J., Interpolation of Orlicz spaces. Studia Math. 60 (1977), 3359.
[15] Hytönen, T., A framework for non-homogeneous analysis on metric spaces, and the RBMO space of Tolsa. Publ. Mat. 54 (2010), 485504.
[16] Kalton, N., Mayboroda, S., and Mitrea, M., Interpolation of Hardy–Sobolev–Besov–Triebel–Lizorkin spaces and applications to problems in partial differential equations. In: Interpolation theory and applications, Contemp. Math. 445 (2007), 121177.
[17] Kreĭn, S. G., Yu. I. Petunın, and Semänov, E. M., Interpolation of Linear Operators. American Mathematical Society, Providence, RI, 1982.
[18] Lemariç–Rieusset, P. G., Multipliers and Morrey spaces. Potential Anal. 38 (2013), no. 3, 741752. http://dx.doi.org/10.1007/s11118-012-9295-8
[19] Maligranda, L., Orlicz Spaces and Interpolation. In: Seminários de Matemática 5, Universidade Estadual de Campinas, Departamento de Matemática, Campinas, 1989.
[20] Mizuta, Y., Nakai, E., Ohno, T., and Shimomura, T., Boundedness of fractional integral operators on Morrey spaces and Sobolev embeddings for generalized Riesz potentials. J. Math. Soc. Japan 62 (2010), 707744. http://dx.doi.org/10.2969/jmsj/06230707
[21] Morrey, C. B., On the solutions of quasi-linear elliptic partial differential equations. Trans. Amer. Math. Soc. 43 (1938), 126166. http://dx.doi.org/10.1090/S0002-9947-1938-1501936-8
[22] Nakai, E., A characterization of pointwise multipliers on the Morrey spaces. Sci. Math. 3 (2000), 445454.
[23] Nakai, E., The Campanato, Morrey and H¨older spaces on spaces of homogeneous type. Studia Math. 176 (2006), 119. http://dx.doi.org/10.4064/sm176-1-1
[24] Nilsson, P., Interpolation of Banach lattices. Studia Math. 82 (1985), 133154.
[25] Peetre, J., On the theory of Lp spaces. J. Funct. Anal. 4 (1969), 7187.
[26] Peetre, J., Sur l’utilisation des suites inconditionellement sommables dans la th´eorie des espaces d’interpolation. Rend. Sem. Mat. Univ. Padova 46 (1971), 173190.
[27] Ruiz, A. and Vega, L., Corrigenda to “Unique continuation for Schr¨odinger operators with potential in Morrey spaces” and a remark on interpolation of Morrey spaces. Publ. Mat. 3 (1995), 405411.
[28] Shestakov, V. A., Interpolation of linear operators in spaces of measurable functions. (Russian) Funktsional. Anal. i Prilozhen. 8 (1974), 9192. http://dx.doi.org/10.1007/BF01078592
[29] Shestakov, V. A., On complex interpolation of Banach spaces of measurable functions. (Russian) Vestnik Leningrad. Univ. 19 (1974), 6468.
[30] Sickel, W., Skrzypczak, L. and Vybĭral, J., Complex interpolation of weighted Besov- and Lizorkin–Triebel spaces. Acta Math. Sin. (Engl. Ser.), to appear.
[31] Stampacchia, G., L(p)-spaces and interpolation. Comm. Pure Appl. Math. 17 (1964), 293306. http://dx.doi.org/10.1002/cpa.3160170303
[32] Yang, D., Yuan, W., and Zhuo, C., Complex interpolation on Besov-type and Triebel–Lizorkin-type spaces. Anal. Appl. (Singapore), to appear.
[33] Yuan, W.,Sickel, W., and Yang, D., Morrey and Campanato Meet Besov, Lizorkin and Triebel. Lecture Notes in Mathematics 2005, Springer-Verlag, Berlin, 2010.
[34] Yuan, W.,Sickel, W., and Yang, D., Interpolations of Morrey-type spaces. Preprint.
MathJax
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.

Keywords

Interpolation of Morrey Spaces on Metric Measure Spaces

  • Yufeng Lu (a1), Dachun Yang (a1) and Wen Yuan (a2)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed