Skip to main content Accessibility help

Saccadic Adaptation in Chiari Type II Malformation

  • Michael S. Salman (a1), James A. Sharpe (a2), Moshe Eizenman (a3), Linda Lillakas (a4), Teresa To (a5), Carol Westall (a6), Martin J. Steinbach (a7) and Maureen Dennis (a8)...



Saccadic adaptation corrects errors in saccadic amplitude. Experimentally-induced saccadic adaptation provides a method for studying motor learning. The cerebellum is a major participant in saccadic adaptation. Chiari type II malformation (CII) is a developmental deformity of the cerebellum and brainstem that is associated with spina bifida. We investigated the effects of CII on saccadic adaptation.


We measured eye movements using an infrared eye tracker in 21 subjects with CII (CII group) and 39 typically developing children (control group), aged 8-19 years. Saccadic adaptation was induced experimentally using targets that stepped horizontally 12º to the right and then stepped backward 3º during saccades.


Saccadic adaptation was achieved at the end of the adaptation phase in participants in each group. Saccadic amplitude gain decreased by 6.9% in the CII group and 9.3% in the control group. The groups did not differ significantly (p = 0.27). Amplitude gain reduction was significantly less in the CII participants who had multiple shunt revisions. Regression analyses revealed no effects of spinal lesion level, presence of nystagmus, or cerebellar vermis dysmorphology on saccadic adaptation.


The neural circuits involved in saccadic adaptation appear to be functionally intact in CII.

RÉSUMÉ: Contexte:

L’adaptation saccadique corrige les erreurs de l’amplitude saccadique. L’adaptation saccadique induite expérimentalement peut être utilisée pour étudier l’apprentissage moteur. Le cervelet participe de façon importante à l’adaptation saccadique. La malformation de Chiari de type II (CII) est une malformation du cervelet et du tronc cérébral qui est associée au spina bifida. Nous avons évalué les effets du CII sur l’adaptation saccadique.


Nous avons mesuré les mouvements oculaires au moyen d’un oculomètre à infrarouge chez 21 sujets atteints de CII (groupe CII) et chez 39 enfants de 8 et 19 ans qui avaient un développement normal (groupe témoin). L’adaptation saccadique était induite expérimentalement au moyen de cibles qui se déplaçaient horizontalement de 12º vers la droite avec retour de 3º pendant les saccades.


L’adaptation saccadique était réussie à la fin de la phase d’adaptation chez les sujets des deux groupes. Le gain d’amplitude saccadique diminuait de 6,9% dans le groupe CII et de 9,3% dans le groupe témoin. Les groupes n’étaient pas significativement différents (p = 0,27). La diminution du gain d’amplitude était significativement moindre chez les sujets CII qui avaient eu de multiples reprises chirurgicales de leur dérivation. Les analyses de régression n’ont pas montré d’effet du niveau de la lésion spinale, de la présence de nystagmus ou de la dysmorphologie du vermis cérébelleux sur l’adaptation saccadique.


Les circuits nerveux impliqués dans l’adaptation saccadique semblent intacts au point de vue fonctionnel dans le CII

    • Send article to Kindle

      To send this article to your Kindle, first ensure is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the or variations. ‘’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Saccadic Adaptation in Chiari Type II Malformation
      Available formats

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Saccadic Adaptation in Chiari Type II Malformation
      Available formats

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Saccadic Adaptation in Chiari Type II Malformation
      Available formats


Corresponding author

Section of Pediatric Neurology, AE 108, Harry Medovy House, Children’s Hosptial, 820 Sherbrook St., Winnipeg, Manitoba, R3A 1R9, Canada


Hide All
1. Gilbert, JN, Jones, KL, Rorke, LB, Chernoff, GF, James, HE. Central nervous system anomalies associated with meningomyelocele, hydrocephalus, and the Arnold-Chiari malformation: reappraisal of theories regarding the pathogenesis of posterior neural tube closure defects. Neurosurgery. 1986;18:55964.
2. Salman, MS, Blaser, SE, Sharpe, JA, Dennis, M. Cerebellar vermis morphology in children with spina bifida and Chiari type II malformation. Childs Nerv Syst. 2006;22:38593.
3. Sutton, LN, Adzick, NS, Bilaniuk, LT, Johnson, MP, Crombleholme, TM, Flake, AW. Improvement in hindbrain herniation demonstrated by serial fetal magnetic resonance imaging following fetal surgery for myelomeningocele. JAMA. 1999;282:182631.
4. Wagner, W, Schwarz, M, Perneczky, A. Primary myelomeningocele closure and consequences. Curr Opin Urol. 2002;12:4658.
5. Scudder, CA, Batourina, EY, Tunder, GS. Comparison of two methods of producing adaptation of saccade size and implications for the site of plasticity. J Neurophysiol. 1998;79:70415.
6. Barash, S, Melikyan, A, Sivakov, A, Zhang, M, Glickstein, M, Thier, P. Saccadic dysmetria and adaptation after lesions of the cerebellar cortex. J Neurosci. 1999;19:109319.
7. Scudder, CA, McGee, DM. Adaptive modification of saccade size produces correlated changes in the discharges of fastigial nucleus neurons. J Neurophysiol. 2003;90:101126.
8. Desmurget, M, Pelisson, D, Urquizar, C, Prablanc, C, Alexander, GE, Grafton, ST. Functional anatomy of saccadic adaptation in humans. Nat Neurosci. 1998;1:5248.
9. Straube, A, Fuchs, AF, Usher, S, Robinson, FR. Characteristics of saccadic gain adaptation in rhesus macaques. J Neurophysiol. 1997;77:87495.
10. Waespe, W, Baumgartner, R. Enduring dysmetria and impaired gain adaptivity of saccade eye movements in Wallenberg’s lateral medullary syndrome. Brain. 1992;115:112546.
11. Dennis, M, Edelstein, K, Hetherington, R, Copeland, K, Frederick, J, Blaser, SE, et al. Neurobiology of perceptual and motor timing in children with spina bifida in relation to cerebellar volume. Brain. 2004;127:110.
12. Thier, P, Dicke, PW, Haas, R, Barash, S. Encoding of movement time by populations of cerebellar Purkinje cells. Nature. 2000;405:726.
13. Thier, P, Dicke, PW, Haas, R, Thielert, CD, Catz, N. The role of the oculomotor vermis in the control of saccadic eye movements. Ann NY Acad Sci. 2002;978:5062.
14. Mclaughlin, SC. Parametric adjustment in saccadic eye movements. Percept Psychophys. 1967;2:35962.
15. Schweighofer, N, Arbib, MA, Dominey, PF. A model of the cerebellum in adaptive control of saccadic gain. I. The model and its biological substrate. Biol Cybern. 1996;75:1928.
16. Albano, JE, King, WM. Rapid adaptation of saccadic amplitude in humans and monkeys. Invest Ophthalmol Vis Sci. 1989;30:188393.
17. Deubel, H. Separate adaptive mechanisms for the control of reactive and volitional saccadic eye movements. Vision Res. 1995;35:352940.
18. Salman, MS, Sharpe, JA, Eizenman, M, Lillakas, L, To, T, Westall, C, et al. Saccadic adaptation in children. J Child Neurol. (in press).
19. Salman, MS, Sharpe, JA, Eizenman, M, Lillakas, L, To, T, Westall, C, et al. Saccades in Children with Chiari type II malformation. Neurology. 2005;64:2098101.
20. Dennis, M, Fletcher, JM, Rogers, T, Hetherington, R, Francis, DJ. Object-based and action-based visual perception in children with spina bifida and hydrocephalus. J Int Neuropsychol Soc. 2002;8:95106.
21. Van Allen, MI, Kalousek, DK, Chernoff, GF, Juriloff, D, Harris, M, McGillivray, BC, et al. Evidence for multi-site closure of the neural tube in humans. Am J Med Genet. 1993;47:72343.
22. Fletcher, JM, Dennis, M, Northrup, H, Barnes, MA, Hannay, HJ, Landry, SH, et al. Spina bifida: genes, brain, and development. Int Rev Res Ment Retard. 2004;29:63117.
23. Wills, KE. Neuropsychological functioning in children with spina bifida and/ or hydrocephalus. J Clin Child Psychol. 1993;22: 24765.
24. Dennis, M, Fitz, CR, Netley, CT, Sugar, J, Harwood-Nash, DC, Hendrick, EB, et al. The intelligence of hydrocephalic children. Arch Neurol. 1981;38:60715.
25. Hunt, GM. The Casey Holter lecture. Non-selective intervention in newborn babies with open spina bifida: the outcome 30 years on for the complete cohort. Eur J Pediatr Surg. 1999;9 Suppl 1:S58.
26. Mazur, JM, Aylward, GP, Colliver, J, Stacey, J, Menelaus, M. Impaired mental capabilities and hand function in myelomeningocele patients. Z Kinderchir. 1988;43 Suppl 2 :S247.
27. DiScenna, AO, Das, VE, Zivotofsky, AZ, Seidman, SH, Leigh, RJ. Evaluation of a video tracking device for measurement of horizontal and vertical eye rotations during locomotion. J Neurosci Meth. 1995;58:8994.
28. SPSS Inc. SPSS (Statistical Package for the Social Sciences) for windows: Chicago, IL, 2001.
29. Altman, DG. Practical statistics for medical research. London; New York: Chapman and Hall; 1995.
30. Hopp, JJ, Fuchs, AF. Investigating the site of human saccadic adaptation with express and targeting saccades. Exp Brain Res. 2002;144:53848.
31. Mezey, LE, Harris, CM. Adaptive control of saccades in children with dancing eye syndrome. Ann NY Acad Sci. 2002;956:44952.
32. Robinson, FR. Role of the cerebellum in movement control and adaptation. Curr Opin Neurobiol. 1995;5:75562.
33. Straube, A, Deubel, H, Ditterich, J, Eggert, T. Cerebellar lesions impair rapid saccade amplitude adaptation. Neurology. 2001;57:21058.
34. Dennis, M, Edelstein, K, Frederick, J, Copeland, K, Francis, DJ, Blaser, SE, et al. Peripersonal spatial attention in children with spina bifida: Associations between horizontal and vertical line bisection and congenital malformations of the corpus callosum, midbrain, and posterior cortex. Neuropsychologia. 2005; 43:200010.
35. Hashimoto, M, Ohtsuka, K. Transcranial magnetic stimulation over the posterior cerebellum during visually guided saccades in man. Brain. 1995;118:118593.
36. Robinson, FR, Fuchs, AF, Noto, CT. Cerebellar influences on saccade plasticity. Ann NY Acad Sci. 2002;956:15563.
37. Coesmans, M, Smitt, PA, Linden, DJ, Shigemoto, R, Hirano, T, Yamakawa, Y, et al. Mechanisms underlying cerebellar motor deficits due to mGluR1-autoantibodies. Ann Neurol. 2003;53:32536.
38. Huber-Okrainec, J, Dennis, M, Brettschneider, J, Spiegler, BJ. Neuromotor speech deficits in children and adults with spina bifida and hydrocephalus. Brain Lang. 2002;80:592602.
39. Colvin, AN, Yeates, KO, Enrile, BG, Coury, DL. Motor adaptation in children with myelomeningocele: comparison to children with ADHD and healthy siblings. J Int Neuropsychol Soc. 2003;9:64252.
40. Edelstein, K, Dennis, M, Copeland, K, Frederick, J, Francis, DJ, Hetherington, CR, et al. Motor learning in children with spina bifida: Dissociation between performance level and acquisition rate. J Int Neuropsychol Soc. 2004;10:111.

Saccadic Adaptation in Chiari Type II Malformation

  • Michael S. Salman (a1), James A. Sharpe (a2), Moshe Eizenman (a3), Linda Lillakas (a4), Teresa To (a5), Carol Westall (a6), Martin J. Steinbach (a7) and Maureen Dennis (a8)...


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed