Skip to main content Accessibility help


  • Access
  • Open access
  • Cited by 15
  • Cited by
    This article has been cited by the following publications. This list is generated based on data provided by CrossRef.

    Wiltfang, Jens Trost, Sarah and Hampel, Harald-Jürgen 2016. Psychiatrie, Psychosomatik, Psychotherapie. p. 1.

    Olney, Nicholas T. Spina, Salvatore and Miller, Bruce L. 2017. Frontotemporal Dementia. Neurologic Clinics, Vol. 35, Issue. 2, p. 339.

    Sagbakken, Mette Nåden, Dagfinn Ulstein, Ingun Kvaal, Kari Langhammer, Birgitta and Rognstad, May-Karin 2017. Dignity in people with frontotemporal dementia and similar disorders — a qualitative study of the perspective of family caregivers. BMC Health Services Research, Vol. 17, Issue. 1,

    Gazzina, S. Manes, M.A. Padovani, A. and Borroni, B. 2017. Clinical and biological phenotypes of frontotemporal dementia: Perspectives for disease modifying therapies. European Journal of Pharmacology, Vol. 817, Issue. , p. 76.

    Wiltfang, Jens Trost, Sarah and Hampel, Harald-Jürgen 2017. Psychiatrie, Psychosomatik, Psychotherapie. p. 1377.

    Bahia, Valéria S. Cecchini, Mário A. Cassimiro, Luciana Viana, Rene Lima-Silva, Thais B. de Souza, Leonardo Cruz Carvalho, Viviane Amaral Guimarães, Henrique C. Caramelli, Paulo Balthazar, Márcio L.F. Damasceno, Benito Brucki, Sônia M.D. Nitrini, Ricardo and Yassuda, Mônica S. 2018. The Accuracy of INECO Frontal Screening in the Diagnosis of Executive Dysfunction in Frontotemporal Dementia and Alzheimer Disease. Alzheimer Disease & Associated Disorders, p. 1.

    Volkmer, Anna Spector, Aimee Warren, Jason D and Beeke, Suzanne 2018. Speech and language therapy for primary progressive aphasia: Referral patterns and barriers to service provision across the UK. Dementia, p. 147130121879724.

    Deutschländer, A. B. Ross, O. A. Dickson, D. W. and Wszolek, Z. K. 2018. Atypical parkinsonian syndromes: a general neurologist's perspective. European Journal of Neurology, Vol. 25, Issue. 1, p. 41.

    Chen, Hongbo Kankel, Mark W. Su, Susan C. Han, Steve W. S. and Ofengeim, Dimitry 2018. Exploring the genetics and non-cell autonomous mechanisms underlying ALS/FTLD. Cell Death & Differentiation,

    Van Mossevelde, Sara Engelborghs, Sebastiaan van der Zee, Julie and Van Broeckhoven, Christine 2018. Genotype–phenotype links in frontotemporal lobar degeneration. Nature Reviews Neurology, Vol. 14, Issue. 6, p. 363.

    Goldman, Jill S. and Van Deerlin, Vivianna M. 2018. Alzheimer’s Disease and Frontotemporal Dementia: The Current State of Genetics and Genetic Testing Since the Advent of Next-Generation Sequencing. Molecular Diagnosis & Therapy, Vol. 22, Issue. 5, p. 505.

    Lewczuk, Piotr Riederer, Peter O’Bryant, Sid E. Verbeek, Marcel M. Dubois, Bruno Visser, Pieter Jelle Jellinger, Kurt A. Engelborghs, Sebastiaan Ramirez, Alfredo Parnetti, Lucilla Jack, Clifford R. Teunissen, Charlotte E. Hampel, Harald Lleó, Alberto Jessen, Frank Glodzik, Lidia de Leon, Mony J. Fagan, Anne M. Molinuevo, José Luis Jansen, Willemijn J. Winblad, Bengt Shaw, Leslie M. Andreasson, Ulf Otto, Markus Mollenhauer, Brit Wiltfang, Jens Turner, Martin R. Zerr, Inga Handels, Ron Thompson, Alexander G. Johansson, Gunilla Ermann, Natalia Trojanowski, John Q. Karaca, Ilker Wagner, Holger Oeckl, Patrick van Waalwijk van Doorn, Linda Bjerke, Maria Kapogiannis, Dimitrios Kuiperij, H. Bea Farotti, Lucia Li, Yi Gordon, Brian A. Epelbaum, Stéphane Vos, Stephanie J. B. Klijn, Catharina J. M. Van Nostrand, William E. Minguillon, Carolina Schmitz, Matthias Gallo, Carla Lopez Mato, Andrea Thibaut, Florence Lista, Simone Alcolea, Daniel Zetterberg, Henrik Blennow, Kaj and Kornhuber, Johannes 2018. Cerebrospinal fluid and blood biomarkers for neurodegenerative dementias: An update of the Consensus of the Task Force on Biological Markers in Psychiatry of the World Federation of Societies of Biological Psychiatry. The World Journal of Biological Psychiatry, Vol. 19, Issue. 4, p. 244.

    Erkkinen, Michael G. Kim, Mee-Ohk and Geschwind, Michael D. 2018. Clinical Neurology and Epidemiology of the Major Neurodegenerative Diseases. Cold Spring Harbor Perspectives in Biology, Vol. 10, Issue. 4, p. a033118.

    Verity, Ryan Kirk, Andrew O’Connell, Megan E. Karunanayake, Chandima and Morgan, Debra G. 2018. The Worried Well? Characteristics of Cognitively Normal Patients Presenting to a Rural and Remote Memory Clinic. Canadian Journal of Neurological Sciences / Journal Canadien des Sciences Neurologiques, Vol. 45, Issue. 02, p. 158.

    Reyes, P. Ortega-Merchan, M. P. Rueda, A. Uriza, F. Santamaria-García, Hernando Rojas-Serrano, N. Rodriguez-Santos, J. Velasco-Leon, M. C. Rodriguez-Parra, J. D. Mora-Diaz, D. E. and Matallana, D. 2018. Functional Connectivity Changes in Behavioral, Semantic, and Nonfluent Variants of Frontotemporal Dementia. Behavioural Neurology, Vol. 2018, Issue. , p. 1.



      • Send article to Kindle

        To send this article to your Kindle, first ensure is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

        Note you can select to send to either the or variations. ‘’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

        Find out more about the Kindle Personal Document Service.

        The Prevalence and Incidence of Frontotemporal Dementia: a Systematic Review
        Available formats

        Send article to Dropbox

        To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

        The Prevalence and Incidence of Frontotemporal Dementia: a Systematic Review
        Available formats

        Send article to Google Drive

        To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

        The Prevalence and Incidence of Frontotemporal Dementia: a Systematic Review
        Available formats
Export citation



Population-based prevalence and incidence studies are essential for understanding the burden of frontotemporal dementia (FTD).


The MEDLINE and EMBASE databases were searched to identify population-based publications from 1985 to 2012, addressing the incidence and/or prevalence of FTD. References of included articles and prior systematic reviews were searched for additional studies. Two reviewers screened all abstracts and full-text reviews, abstracted data and performed quality assessments.


Twenty-six studies were included. Methodological limitations led to wide ranges in the estimates for prevalence (point prevalence 0.01-4.6 per 1000 persons; period prevalence 0.16-31.04 per 1000 persons) and incidence (0.0-0.3 per 1000 person-years). FTD accounted for an average of 2.7% (range 0-9.1%) of all dementia cases among prevalence studies that included subjects 65 and older compared to 10.2% (range 2.8-15.7%) in studies restricted to those aged less than 65. The cumulative numbers of male (373 [52.5%]) and female (338 [47.5%]) cases from studies reporting this information were nearly equal (p=0.18). The behavioural variant FTD (bvFTD) was almost four times as common as the primary progressive aphasias.


Population-based estimates for the epidemiology of FTD varied widely in the included studies. Refinements in the diagnostic process, possibly by the use of validated biomarkers or limiting case ascertainment to specialty services, are needed to obtain more precise estimates of the prevalence and incidence of FTD.


Frontotemporal dementia (FTD) is a clinically and pathologically heterogeneous group of non-Alzheimer neurodegenerative dementias characterized by progressive decline in behaviour (behavioural variant FTD [bvFTD]) and/or language (primary progressive aphasias, such as semantic dementia and progressive non-fluent aphasia [PNFA]) associated with degeneration of the frontal and anterior temporal lobes. 1 , 2 These presentations can overlap with atypical parkinsonian disorders (i.e., corticobasal syndrome [CBS], progressive supranuclear palsy [PSP]) and amyotrophic lateral sclerosis [ALS]). Though a variety of terms have been employed to describe these conditions (e.g., frontotemporal degeneration, frontotemporal lobar degeneration [which some restrict to pathologically confirmed cases], dementia of the frontal type, Pick complex disorder), in this paper we will use FTD. First described in the late 19th century, 2 FTD is generally held to be a relatively common cause of early-onset (<65 years) dementia. 3 Dementia clinic-based studies suggest that FTD may account for approximately 5% of all dementia cases, 4 but this may represent an inaccurate estimate of the proportion of dementia cases arising from this condition because of selection or referral bias. 5

In the absence of autopsy confirmation, the diagnosis of FTD is dependent on searching for clinical diagnostic features. In research and practice, the most commonly used criteria for detection of FTD over the last 20 years were those developed by the Lund and Manchester Groups, 6 Gregory and Hodges, 7 Neary et al. 8 and the Work Group of Frontotemporal Dementia and Pick’s Disease (also referred to as the McKhann criteria). 9 Revised diagnostic criteria have been recently developed. 10 , 11

Population-based prevalence and incidence studies are essential for understanding the societal burden of FTD and planning for the range of healthcare services needed for those with this condition. In this paper, we report on a systematic review of population-based prevalence and incidence studies of FTD.


This is one in a series of systematic reviews on the prevalence and incidence of priority neurological conditions identified by the Public Health Agency of Canada and the Neurological Health Charities Canada as part of the National Population Health Study of Neurological Conditions. 12

Search Strategy

The systematic review was conducted according to a predetermined protocol based on the PRISMA Statement for systematic reviews and meta-analyses. 13 The search strategy (see Appendix A) was developed by the study authors, who possess extensive expertise in dementia and/or epidemiology, in consultation with a research librarian experienced in the performance of systematic reviews. The initial MEDLINE and EMBASE search was conducted in February of 2011 and then updated in May of 2012. The review was restricted to studies written in English or French and published from the year 2000 or later for international studies and 1985 or later for Canadian studies. References were exported and managed using EndNote X5.

Study Selection

Two reviewers independently screened all abstracts in order to identify original research that appeared to be reporting on the prevalence or incidence of dementia. These papers were selected for full-text review. Studies were excluded at this stage if the abstract clearly indicated that the study was not population-based.

Two reviewers independently performed the full-text reviews. Articles were included in this systematic review if they met the following criteria: (1) represented original research; (2) were population-based (i.e., involved a defined “general population” as opposed to a specific hospital- or clinic-based population); and (3) reported an incidence and/or prevalence estimate of FTD. English and French articles were screened and reviewed in a similar fashion by reviewers fluent in English and French, respectively. The references of included articles were hand searched for additional articles. All additional articles were evaluated in a manner identical to what has been previously outlined. The references of systematic reviews and literature reviews on the epidemiology of dementia were also hand searched. Disagreements were resolved by consensus, with involvement of a third party if necessary (this step was never required).

Data Extraction and Study Quality

Two reviewers extracted data from included articles using a standard data collection form. Agreement was reached on all items. If multiple articles reported data on the same study population, the most comprehensive data were utilized. In cases where the studies reported on different time frames or subgroups (e.g., by sex and/or age), all data were included. Demographic data retrieved included age, sex and study location. Source/type of clinical data and the definition/diagnostic criteria used for the diagnosis of FTD were noted. Incidence and prevalence estimates of dementia from each study were recorded, along with any stratification by age, sex or year of data collection. The quality of the included studies was evaluated using an assessment instrument 14 , 15 (see Appendix B). This instrument included an evaluation of sample representativeness, condition assessment and statistical methods. Each study was given a quality score that ranged from 0 to 8 (higher being better).

Data Analysis

Pooled meta-analyses were not done due to significant between-study heterogeneity and small sample size. Forest plots presenting the distribution of study estimates were produced. As it is held that FTD disproportionately affects middle-aged individuals, 2 we compared studies that included older participants (65+) with those that restricted themselves to younger (<65) individuals. All statistical analyses were carried out in R version 2.14. The meta package was employed to produce the forest plots. Depending on the methodology of the study, incidence proportion, incidence rate, period prevalence and point prevalence are provided.


Identification and Description of Studies

The search strategy yielded 16,066 citations (8743 from MEDLINE, 7323 from EMBASE, with 7923 remaining after the removal of duplicates) (Figure 1). A total of 707 articles were selected for full-text review. Of the 176 studies (total of the original and updated searches plus the hand search of included articles) that presented data on the prevalence and/or incidence of dementia and its subtypes, 26 reported on FTD and were included in our systematic review.

Figure 1 Study flow diagram.

The characteristics of the 26 included studies are summarized in Tables 1-3. Nineteen 16 - 34 reported on prevalence, six 35 - 40 on incidence and one study provided data on both the incidence and prevalence of FTD. 41 Sixteen studies presented data from Europe, seven from Asia, two from South America, and one from North America. While a variety of approaches was employed, most studies were either surveys of residents of a specific location (n=12) or based on cases identified by specialty services serving a defined catchment area (n=8). The Neary 8 (n=16) and/or Lund and Manchester 6 (n=9) criteria were the diagnostic criteria most commonly used, with diagnosis typically based on an assessment by a healthcare professional (n=22), often coupled with imaging studies (n=18) and/or laboratory investigations (n=15), and/or health record review (n=10).

Table 1 Studies Reporting on the Prevalence of Frontotemporal Dementia

AD=Alzheimer’s disease; bvFTD=behavioural variant FTD; CBD=corticobasal degeneration; CI95%=95% confidence interval; CT=computed tomography; DSM–III–R=Diagnostic and Statistical Manual of Mental Disorders, 3rd ed., revised; EEG=electroencephalography; FTD=frontotemporal dementia; LP=lumbar puncture; SD=standard deviation.

Prevalence of Frontotemporal Dementia

Fourteen articles reported on point prevalence 17 , 18 , 20 , 22 - 24 , 26 - 28 , 30 - 34 (Figure 2). Estimates ranged widely from 0.01 to 4.61 per 1000. Among studies restricted to individuals less than 65 years of age, 17 , 23 , 27 , 30 point prevalence was in a narrower range (0.07-0.30 per 1000). Studies that surveyed a defined population 22 , 24 , 26 , 32 - 34 generally reported higher estimates than those based on enumerating cases identified by specialty services 17 , 18 , 20 , 30 (range of estimates in surveys 0.13-4.61 per 1000 compared to 0.15-0.40 per 1000 for specialty services), but the latter were in a narrower range.

Figure 2 Point prevalence of frontotemporal dementia.

Six studies 16 , 19 , 21 , 25 , 29 , 41 reported on period prevalence (Figure 3). Period prevalence estimates ranged from 0.16 to 31.04 per 1000. The Gislason study 21 reported a strikingly high prevalence. A number of features of this study are unique: a single-phase survey approach was used; only a relatively small number of participants were examined (n=494); the age range studied (85-86) was both narrow and quite advanced; and the focus of the study was detecting what was termed a frontal lobe syndrome, with these individuals diagnosed as having bvFTD if they did not meet exclusionary criteria, irrespective of whether they met DSM–III–R criteria for a dementia (9/14 cases did not). Estimates derived from surveys 16 , 19 , 21 , 29 tended to be higher than those based on cases identified by specialty services 25 , 41 (range 0.15-31.04 per 1000 vs. 0.27-0.48 per 1000), but the latter were in a narrower range.

Figure 3 Period prevalence of frontotemporal dementia.

FTD accounted for 2.7% (range 0-9.1%) of all dementia cases in the prevalence studies that included individuals older than 65 years of age 16 , 19 , 21 , 22 , 24 - 26 , 28 , 29 , 32 - 34 , 41 compared to 10.2% (2.8-15.7%) among studies restricted to those younger than 65. 23 , 27 , 30

Incidence of Frontotemporal Dementia

Only one study reported on incidence proportion. 41 This community-based study of subjects between 42 to 92 years of age consisted of 29,357 persons followed for 6 years. Incidence proportion was estimated to be 0.11 per 1000.

Six studies 35 - 40 reported on incidence rate (Figure 4). Participants were followed for between 3 and 25 years. Incidence rate estimates ranged from 0.00 to 0.33 per 1000 person-years. Among studies restricted to individuals less than 65 35 , 37 or 70 36 years of age, incidence rate was in a narrower range (0.00-0.06 per 1000 person-years) compared to studies that included older subjects (0.17-0.33 per 1000 person-years). Estimates derived from surveys 38 , 40 were higher than specialty service-based ones 35 , 37 (range 0.28-0.55 per 1000 person-years vs. 0.03-0.05 per 1000 person-years), but the latter were in a narrower range.

Figure 4 Incidence rate of frontotemporal dementia.

FTD accounted for 2.0% (range 0.2-3.9%) of all dementia cases in incidence studies including older subjects 35 , 38 - 41 and 15.3% (range 6.7-29.6%) in studies restricted to those younger than 65 35 , 37 or 70 36 years of age.


In the 13 studies providing information on the sex of those with FTD, 17 - 21 , 25 , 30 , 31 , 33 , 36 - 38 , 41 the cumulative numbers of female and male cases were close to equal (373 [52.5% of all FTD cases] and 338 [47.5%], respectively [p=0.18]).

Type of Frontotemporal Dementia

Among studies that supplied information on the frequency of the type of FTD detected, 18 , 20 , 30 , 35 - 37 bvFTD (n=299, 79.7% of the total of 375 cases, which included one classified as FTD with ALS) was approximately four times as common as the primary progressive aphasias (n=75, 20%; 32 semantic dementia, 43 PNFA). A study that provided population estimates based on FTD cases admitted to state psychiatric hospitals serving defined catchment areas 25 not surprisingly reported that all had behavioural symptoms (61% had behavioural only and 39% both behavioural and language symptoms). Two studies 31 , 37 reporting on a total of 356 individuals with FTD noted that 12 (4.6% of the total number of FTD cases) also had a diagnosis of ALS (note that individuals with ALS were included in the FTD total). Five studies 23 , 33 - 35 , 37 reporting on a total of 95 individuals with FTD found an additional 5, and 17 study participants diagnosed with CBS and PSP, respectively (note that individuals with these conditions were not included in the FTD total).

Study Quality

The median study quality score was 6 (range 4-8) (Table 4).

Table 2 Studies Reporting on the Incidence Rate of Frontotemporal Dementia

bvFTD=behavioural variant FTD; CBD=corticobasal degeneration; EOD=early-onset dementia; FTD=frontotemporal dementia; ICD=International Classification of Diseases; LOD=late-onset dementia; PSP=progressive supranuclear palsy.

Table 3 Studies Reporting on the Incidence Proportion of Frontotemporal Dementia

EEG=electroencephalography; FTD=frontotemporal dementia.

Table 4 Quality Assessment Scores of Frontotemporal Dementia Incidence and Prevalence Studies

NR=not reported; NC=not clear; NA=not applicable.


We found that population-based prevalence and incidence estimates for FTD were generally low and varied widely, especially among older individuals. FTD accounted for a higher proportion of dementia cases among younger (<65) individuals. In the studies reviewed, there was no apparent predisposition based on sex, and bvFTD was the most common form encountered, and relatively few individuals were felt to have CBS, PSP or ALS.

Two previous systematic reviews 42 , 43 based on a smaller number of studies reported similar incidence and prevalence estimates. Knopman and Roberts 42 reviewed five prevalence and three incidence studies. For those 45-64 years of age, point prevalence estimates varied tenfold, from 0.02 to 0.22 per 1000, while incidence rates were between 0.027 and 0.041 per 1000. Onyike and Diehl-Schmid 43 identified seven prevalence and three incidence studies. Their reported prevalence (0.02-0.31 per 1000) and incidence (0.013 and 0.167 per 1000) rates also ranged widely. After completion of our systematic review, three otherwise eligible studies 44 - 46 that reported on the incidence and/or prevalence of FTD were published. Their estimates fall within the range we report and do not change our main findings.

We suspect that the limitations of the clinical diagnostic criteria used in included studies 6 - 9 and concerns about how the criteria were operationalized partially explain the wide ranges in the estimates of prevalence and incidence. These criteria have been criticized for (among other things): (1) their large number of features (some of which were very rare or of debatable validity); (2) lack of guidance as to the number of features required for diagnosis and the relative importance of symptoms; (3) placing greater emphasis on behavioural manifestations compared to language (one of the studies reviewed 19 only considered behavioural symptoms, while the five studies that solely utilized the Lund and Manchester criteria 23 , 24 , 27 , 35 , 41 would be expected to preferentially detect bvFTD); (4) ambiguity in the description and time frame of behavioural manifestations; (5) need to infer some aspects of the person’s state (e.g., assessment of the lack of insight); (6) uncertainty on how best to assess cognitive (traditional executive measures vs. social cognition and decision-making tasks) and behavioural (e.g., objective vs. subjective) characteristics; (7) rigidity in how criteria were applied; (8) limited role for supportive features; (9) no estimate for level of diagnostic certainty (e.g., probable or possible); (10) impact of the exclusionary criteria; (11) relative neglect of imaging and genetic characteristics; and (12) their insensitivity for early disease. 11 , 47 - 49 Patients with bvFTD are frequently misdiagnosed as suffering from a psychiatric illness early in the course of their illness 50 , 51 and referred to mental health services. 52 As an accurate clinical diagnosis of FTD can be very difficult to make upon presentation, long-term follow-up may be needed to establish its presence. 51 , 53 , 54

Autopsy studies indicate that the criteria used in our included studies lack sensitivity. For example, Neary criteria 8 were positive in only 79 of 152 (52%) autopsy-confirmed cases of bvFTD, 11 with particular issues among those over the age of 65. The exclusionary features (e.g., early severe amnesia, spatial disorientation) eliminated 26 confirmed cases. Another study 55 of these criteria found that they had a low sensitivity (36.5%) at the time of the person’s initial presentation compared to their final clinical diagnosis. The revised diagnostic criteria 10 , 11 will likely have improved sensitivity, 11 , 56 but possibly at the cost of worse specificity and a heightened risk of misclassifying individuals as suffering from FTD when they in fact have a frontal variant of Alzheimer’s disease, 57 other neurological causes or a psychiatric diagnosis. 58 Further validation of these revised criteria is qrequired. The newer criteria were not utilized in the studies we reviewed.

Experienced clinicians working in specialty clinics are able to accurately diagnose FTD. 59 , 60 Clinical acumen can be supplemented by appropriate use of investigations. For example, finding frontotemporal abnormalities without corresponding ones in more posterior brain areas on functional (e.g., single-photon emission computed tomography, positron emission tomography) or structural (e.g., magnetic resonance imaging) neuroimaging studies can improve on the sensitivity of clinical criteria in detecting FTD. 61 Basing estimates on patients seen by specialty services who are comprehensively investigated would partially address concerns about the validity of the diagnosis, but at the potential cost of missing cases. A proportion of affected individuals in the catchment area of the study may not be seen by the services utilized in identifying cases, as they may be referred elsewhere (though some authors minimize this possibility because of their conviction that the high regard local practitioners have for their service means that suspected cases will be referred to them 17 , 18 , 37 ), are not experiencing the types of symptoms that would lead to a referral, or are unwilling to be seen.

We did not find a lower FTD prevalence or incidence among older (65+) compared to younger (<65) individuals. Five studies 18 , 20 , 30 , 31 , 36 reporting estimates by age subgroups found the highest prevalence and incidence rates between 60 and the mid-70s. The study 21 with the oldest subjects included in our systematic review reported the highest prevalence of FTD, but this investigation had other unique features that may have contributed to the high estimate. Studies published subsequent to our review have reported high prevalence 44 and incidence 45 rates in older populations. While we found that FTD made up a larger proportion of dementia cases among those less than 65 compared to older patients, this appeared to be driven more by the exponential increase in prevalence and incidence with advancing age of other neurodegenerative causes of dementia, in particular Alzheimer’s disease (AD), than a higher incidence of FTD among those less than 65 compared to older individuals. Differentiating FTD from AD can be particularly challenging at more advanced ages. Compared to younger individuals with FTD, older (65+) persons with this condition tend to have more memory and visuospatial deficits suggestive of AD while showing less pronounced frontal and temporal lobar atrophy on imaging studies. 62 , 63 The perception that FTD becomes less common as we age may be due to the increasing difficulty in differentiating it from other forms of dementia.

Our systematic review was not restricted to population-based studies with autopsy confirmation of the clinical diagnosis. There are but few of these studies—a systematic review published in 2006 64 could only identify six. Their restriction to high-income countries, questions about the generalizability of their results and the relative rarity of FTD coupled with the limited number of brains being collected mean that these extremely valuable studies cannot fully address questions about the population-based prevalence and incidence of FTD. As well, in an era without specific disease-modifying therapies, the patient’s clinical profile rather than their underlying pathology will be driving service provision.

Notwithstanding the limitations noted above, our systematic review of the incidence and prevalence of FTD updates and expands on prior work. Because of the nature of their symptoms, it has been argued that individuals with FTD, especially early-onset cases, 17 , 35 will be referred to assessment and management services. While relying on figures from these sources will underestimate the overall prevalence and incidence of this condition, collating data from specialty services might still be an efficient way of capturing data on patients requiring assistance from the healthcare system. The Cambridgeshire studies of early-onset dementia found that all those with FTD in contact with the healthcare system were known to local specialist services, 30 , 37 while in Sweden 45 diagnoses of FTD were almost exclusively made by specialist clinics. Standardization of methods and refinements in the diagnostic process, possibly by the use of validated biomarkers, will hopefully improve the precision of prevalence and incidence estimates of this challenging condition.


We thank Ms. Diane Lorenzetti, librarian at the University of Calgary, who guided the development of the search strategy for this systematic review. Our study is part of the National Population Health Study of Neurological Conditions. We acknowledge the membership of Neurological Health Charities Canada and the Public Health Agency of Canada for their contribution to the success of this initiative. Funding for the study was provided by the Public Health Agency of Canada. The opinions expressed in this publication are those of the authors/researchers and do not necessarily reflect the official views of the Public Health Agency of Canada.


Kirsten Fiest, Jodie Roberts, Dawn Pearson, Pamela Roach, Andrew Kirk, Colleen Maxwell, Eric Smith and Tamara Pringsheim do not have anything to disclose.

David Hogan has the following disclosures: He holds the Brenda Strafford Foundation Chair in Geriatric Medicine, though receives no salary support from this.

Nathalie Jetté has the following disclosures: Public Health Agency of Canada, Principal Investigator, research support; Canada Research Chair, Researcher, research support; Alberta Innovates Health Solutions, Researcher, research support.

Statement of Authorship

DBH, NJ, KMF, JIR, TP and CJM contributed to study conception and design. DBH, NJ, KMF, JIR, DP, EES, PR, AK and CJM contributed to the acquisition of data. KMF and DBH conducted the data analysis. DBH, NJ, KMF, JIR, EES and CJM participated in the interpretation of study data. All authors participated in critically revising the manuscript for important intellectual content and gave final approval for the submission of this manuscript and any further submissions of this work.

Supplementary Material

To view the supplementary material that exist for this study (Appendix e-1 and e-2), please visit


1. Rabinovici, GD, Miller, BL. Frontotemporal lobar degeneration: epidemiology, pathophysiology, diagnosis and management. CNS Drugs. 2010;24(5):375-398.
2. Warren, JD, Rohrer, JD, Rossor, MN. Clinical review: frontotemporal dementia. BMJ. 2013;347:f4827.
3. Rossor, MN, Fox, NC, Mummery, CJ, Schott, JM, Warren, JD. The diagnosis of young-onset dementia. Lancet Neurol. 2010;9(8):793-806.
4. Feldman, H, Levy, AR, Hsiung, GY, Peters, KR, Donald, A, Black, SE, et al. A Canadian cohort study of cognitive impairment and related dementias (ACCORD): study methods and baseline results. Neuroepidemiology. 2003;22(5):265-274.
5. Chow, TW, Hodges, JR, Dawson, KE, Miller, BL, Smith, V, Mendez, MF, et al. Referral patterns for syndromes associated with frontotemporal degeneration. Alzheimer Dis Assoc Disord. 2005;19:17-19.
6. Clinical and neuropathological criteria for frontotemporal dementia: the Lund and Manchester Groups. J Neurol Neurosurg Psychiatry. 1994;57(4):416-418.
7. Gregory, CA, Hodges, JR. Clinical features of frontal lobe dementia in comparison to Alzheimer’s disease. J Neural Transm Suppl. 1996;47:103-123.
8. Neary, D, Snowden, JS, Gustafson, L, Passant, U, Stuss, D, Black, S, et al. Frontotemporal lobar degeneration: a consensus on clinical diagnostic criteria. Neurology. 1998;51(6):1546-1554.
9. McKhann, GM, Albert, MS, Grossman, M, Miller, B, Dickson, D, Trojanowski, JQ, et al. Clinical and pathological diagnosis of frontotemporal dementia: report of the Work Group on Frontotemporal Dementia and Pick’s Disease. Arch Neurol. 2001;58(11):1803-1809.
10. Gorno-Tempini, ML, Hillis, AE, Weintraub, S, Kertesz, A, Mendez, M, Cappa, SF, et al. Classification of primary progressive aphasia and its variants. Neurology. 2011;76(11):1006-1014.
11. Rascovsky, K, Hodges, JR, Knopman, D, Mendez, MF, Kramer, JH, Neuhaus, J, et al. Sensitivity of revised diagnostic criteria for the behavioural variant of frontotemporal dementia. Brain. 2011;134(Pt 9):2456-2477.
12. Caesar-Chavannes, CR, MacDonald, S. Cross-Canada Forum: National Population Health Study of Neurological Conditions in Canada. Chronic Dis Inj Can. 2013;33(3):188-191.
13. Moher, D, Liberati, A, Tetzlaff, J, Altman, DG, PRISMA Group. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA Statement. PLoS Med. 2009;6(7):e1000097.
14. Boyle, MH. Guidelines for evaluating prevalence studies. Evid Based Mental Health. 1998;1(2):37-39.
15. Loney, PL, Chambers, LW, Bennett, KJ, Roberts, JG, Stratford, PW. Critical appraisal of the health research literature: prevalence or incidence of a health problem. Chronic Dis Can. 1998;19(4):170-176.
16. Banerjee, TK, Mukherjee, CS, Dutt, A, Shekhar, A, Hazra, A. Cognitive dysfunction in an urban Indian population: some observations. Neuroepidemiology. 2008;31(2):109-114.
17. Borroni, B, Alberici, A, Grassi, M, Rozzini, L, Turla, M, Zanetti, O, et al. Prevalence and demographic features of early-onset neurodegenerative dementia in Brescia County, Italy. Alzheimer Dis Assoc Disord. 2011;25:341-344.
18. Borroni, B, Alberici, A, Grassi, M, Turla, M, Zanetti, O, Bianchetti, A, et al. Is frontotemporal lobar degeneration a rare disorder? Evidence from a preliminary study in Brescia County, Italy. J Alzheimers Dis. 2010;19(1):111-116.
19. Gascon-Bayarri, J, Reñé, R, Del Barrio, JL, De Pedro-Cuesta, J, Ramón, JM, Manubens, JM, et al. Prevalence of dementia subtypes in El Prat de Llobregat, Catalonia, Spain: the PRATICON study. Neuroepidemiology. 2007;28(4):224-234.
20. Gilberti, N, Turla, M, Alberici, A, Bertasi, V, Civelli, P, Archetti, S, et al. Prevalence of frontotemporal lobar degeneration in an isolated population: the Vallecamonica study. Neurol Sci. 2012;33(4):899-904.
21. Gislason, TB, Sjögren, M, Larsson, L, Skoog, I. The prevalence of frontal variant frontotemporal dementia and the frontal lobe syndrome in a population-based sample of 85 year olds. J Neurol Neurosurg Psychiatry. 2003;74(7):867-871.
22. Gurvit, H, Emre, M, Tinaz, S, Bilgic, B, Hanagasi, H, Sahin, H, Gurol, E, et al. The prevalence of dementia in an urban Turkish population. Am J Alzheimers Dis Other Demen. 2008;23(1):67-76.
23. Harvey, RJ, Skelton-Robinson, M, Rossor, MN. The prevalence and causes of dementia in people under the age of 65 years. J Neurol Neurosurg Psychiatry. 2003;74(9):1206-1209.
24. Herrera, E Jr, Caramelli, P, Silveira, AS, Nitrini, R. Epidemiologic survey of dementia in a community-dwelling Brazilian population. Alzheimer Dis Assoc Disord. 2002;16(2):103-108.
25. Ibach, B, Koch, H, Koller, M, Wolfersdorf, M, Workgroup for Geriatric Psychiatry of the Psychiatric State Hospitals of Germany, Workgroup for Clinical Research of the Psychiatric State Hospitals of Germany. Hospital admission circumstances and prevalence of frontotemporal lobar degeneration: a multicenter psychiatric state hospital study in Germany. Dement Geriatr Cogn Disord. 2003;16(4):253-264.
26. Ikeda, M, Hokoishi, K, Maki, N, Nebu, A, Tachibana, N, Komori, K, et al. Increased prevalence of vascular dementia in Japan: a community-based epidemiological study. Neurology. 2001;57(5):839-844.
27. Ikejima, C, Yasuno, F, Mizukami, K, Sasaki, M, Tanimukai, S, Asada, T. Prevalence and causes of early-onset dementia in Japan: a population-based study. Stroke. 2009;40(8):2709-2714.
28. Kivipelto, M, Helkala, EL, Laakso, MP, Hänninen, T, Hallikainen, M, Alhainen, K, et al. Apolipoprotein E e4 allele, elevated midlife total cholesterol level, and high midlife systolic blood pressure are independent risk factors for late-life Alzheimer disease. Ann Intern Med. 2002;137:149-155.
29. Lee, DY, Lee, JH, Ju, YS, Lee, KU, Kim, KW, Jhoo, JH, et al. The prevalence of dementia in older people in an urban population of Korea: the Seoul study. J Am Geriatr Soc. 2002;50(7):1233-1239.
30. Ratnavalli, E, Brayne, C, Dawson, K, Hodges, JR. The prevalence of frontotemporal dementia. Neurology. 2002;58(11):1615-1621.
31. Rosso, SM, Donker Kaat, L, Baks, T, Joosse, M, de Koning, I, Pijnenburg, Y, de Jong, D, et al. Frontotemporal dementia in The Netherlands: patient characteristics and prevalence estimates from a population-based study. Brain. 2003;126(Pt 9):2016-2022.
32. Stevens, T, Livingston, G, Kitchen, G, Manela, M, Walker, Z, Katona, C. Islington study of dementia subtypes in the community. Br J Psychiatry. 2002;180:270-276.
33. Wada-Isoe, K, Uemura, Y, Suto, Y, Doi, K, Imamura, K, Hayashi, A, et al. Prevalence of dementia in the rural island town of Ama-cho, Japan. Neuroepidemiology. 2009;32(2):101-106.
34. Yamada, T, Hattori, H, Miura, A, Tanabe, M, Yamori, Y. Prevalence of Alzheimer’s disease, vascular dementia and dementia with Lewy bodies in a Japanese population. Psychiatry Clin Neurosci. 2001;55(1):21-25.
35. Garre-Olmo, J, Genís Batlle, D, del Mar Fernández, M, Marquez Daniel, F, de Eugenio Huélamo, R, Casadevall, T, et al. Incidence and subtypes of early-onset dementia in a geographically defined general population. Neurology. 2010;75(14):1249-1255.
36. Knopman, DS, Petersen, RC, Edland, SD, Cha, RH, Rocca, WA. The incidence of frontotemporal lobar degeneration in Rochester, Minnesota, 1990 through 1994. Neurology. 2004;62(3):506-508.
37. Mercy, L, Hodges, JR, Dawson, K, Barker, RA, Brayne, C. Incidence of early-onset dementias in Cambridgeshire, United Kingdom. Neurology. 2008;71(19):1496-1499.
38. Nitrini, R, Caramelli, P, Herrera, E Jr, Bahia, VS, Caixeta, LF, Radanovic, M, et al. Incidence of dementia in a community-dwelling Brazilian population. Alzheimer Dis Assoc Disord. 2004;18(4):241-246.
39. Phung, TK, Waltoft, BL, Kessing, LV, Mortensen, PB, Waldemar, G. Time trend in diagnosing dementia in secondary care. Dement Geriatr Cogn Disord. 2010;29(2):146-153.
40. Ravaglia, G, Forti, P, Maioli, F, Martelli, M, Servadei, L, Brunetti, N, et al. Incidence and etiology of dementia in a large elderly Italian population. Neurology. 2005;64(9):1525-1530.
41. Andreasen, N, Blennow, K, Sjödin, C, Winblad, B, Svärdsudd, K. Prevalence and incidence of clinically diagnosed memory impairments in a geographically defined general population in Sweden: the Pitea Dementia Project. Neuroepidemiology. 1999;18(3):144-155.
42. Knopman, DS, Roberts, RO. Estimating the number of persons with frontotemporal lobar degeneration in the US population. J Mol Neurosci. 2011;45(3):330-335.
43. Onyike, CU, Diehl-Schmid, J. The epidemiology of frontotemporal dementia. Int Rev Psychiatry. 2013;25(2):130-137.
44. Wada-Isoe, K, Ito, S, Adachi, T, Yamawaki, M, Nakashita, S, Kusumi, M, et al. Epidemiological survey of frontotemporal lobar degeneration in Tottori Prefecture, Japan. Dement Geriatr Cogn Dis Extra. 2012;2(1):381-386.
45. Nilsson, C, Landqvist Waldö, M, Nilsson, K, Santillo, A, Vestberg, S. Age-related incidence and family history in frontotemporal dementia: data from the Swedish Dementia Registry. PLoS One. 2014;9(4):e94901.
46. Luukkainen, L, Bloigu, R, Moilanen, V, Remes, AM. Epidemiology of frontotemporal lobar degeneration in Northern Finland. Dement Geriatr Cogn Dis Extra. 2015;5:435-441.
47. Neary, D, Snowden, J, Mann, D. Frontotemporal dementia. Lancet Neurol. 2005;4(11):771-780.
48. Rascovsky, K, Grossman, M. Clinical diagnostic criteria and classification controversies in frontotemporal lobar degeneration. Int Rev Psychiatry. 2013;25(2):145-158.
49. Rascovsky, K, Hodges, JR, Kipps, CM, Johnson, JK, Seeley, WW, Mendez, MF, et al. Diagnostic criteria for the behavioral variant of frontotemporal dementia (bvFTD): current limitations and future directions. Alzheimer Dis Assoc Disord. 2007;21(4):S14-S18.
50. Woolley, JD, Khan, BK, Murthy, NK, Miller, BL, Rankin, KP. The diagnostic challenge of psychiatric symptoms in neurodegenerative disease: rates of and risk factors for prior psychiatric diagnosis in patients with early neurodegenerative disease. J Clin Psychiatry. 2011;72:126-133.
51. Landqvist Waldö, M, Gustafson, L, Passant, U, Englund, E. Psychotic symptoms in frontotemporal dementia: a diagnostic dilemma? Int Psychogeriatr. 2015;27:531-539.
52. Johnson, JK, Diehl, J, Mendez, MF, Neuhaus, J, Shapira, JS, Forman, M, et al. Frontotemporal lobar degeneration: demographic characteristics of 353 patients. Arch Neurol. 2005;62:925-930.
53. Mendez, MF. The unique predisposition to criminal violations in frontotemporal dementia. J Am Acad Psychiatry Law. 2010;38:318-323.
54. Silva, JA. Commentary: the forensic psychiatry of frontotemporal dementia. J Am Acad Psychiatry Law. 2010;38:324-328.
55. Mendez, MF, Shapira, JS, McMurtray, A, Licht, E, Miller, BL. Accuracy of the clinical evaluation for frontotemporal dementia. Arch Neurol. 2007;64(6):830-835.
56. Costa, S, Suárez-Calvet, M, Antón, S, Dols-Icardo, O, Clarimón, J, Alcolea, D, et al. Comparison of 2 diagnostic criteria for the behavioral variant of frontotemporal dementia. Am J Alzheimers Dis Other Demen. 2013;28:469-476.
57. Woodward, M, Jacova, C, Black, SE, Kertesz, A, Mackenzie, IR, Feldman, H, et al. Differentiating the frontal variant of Alzheimer’s disease. Int J Geriatr Psychiatry. 2010;25(7):732-738.
58. Krudop, WA, Kerssens, CJ, Dols, A, Prins, ND, Möller, C, Schouws, S, et al. Identifying bvFTD within the wide spectrum of late onset frontal lobe syndrome: a clinical approach. Am J Geriatr Psychiatry. 2015;23:1056-1066.
59. Knopman, DS, Boeve, BF, Parisi, JE, Dickson, DW, Smith, GE, Ivnik, RJ, et al. Antemortem diagnosis of frontotemporal lobar degeneration. Ann Neurol. 2005;57(4):480-488.
60. Snowden, JS, Thompson, JC, Stopford, CL, Richardson, AM, Gerhard, A, Neary, D, et al. The clinical diagnosis of early-onset dementias: diagnostic accuracy and clinicopathological relationships. Brain. 2011;134(Pt 9):2478-2492.
61. Mendez, MF, Shapira, JS, McMurtray, A, Licht, E, Miller, BL. Accuracy of the clinical evaluation for frontotemporal dementia. Arch Neurol. 2007;64:830-835.
62. Baborie, A, Griffiths, TD, Jaros, E, Momeni, P, McKeith, IG, Burn, DJ, et al. Frontotemporal dementia in elderly individuals. Arch Neurol. 2012;69(8):1052-1060.
63. Shinagawa, S, Toyota, Y, Ishikawa, T, Fukuhara, R, Hokoishi, K, Komori, K, et al. Cognitive function and psychiatric symptoms in early- and late-onset frontotemporal dementia. Dement Geriatr Cogn Disord. 2008;25(5):439-444.
64. Zaccai, J, Ince, P, Brayne, C. Population-based neuropathological studies of dementia: design, methods and areas of investigation: a systematic review. BMC Neurol. 2006;6:2.