Hostname: page-component-84b7d79bbc-5lx2p Total loading time: 0 Render date: 2024-08-01T08:50:47.551Z Has data issue: false hasContentIssue false

New Evidence for an Active Role of Aluminum in Alzheimer's Disease

Published online by Cambridge University Press:  18 September 2015

D.R. Crapper McLachlan*
Affiliation:
Department of Physiology, University of Toronto, Toronto
W.J. Lukiw
Affiliation:
Department of Physiology, University of Toronto, Toronto
T.P.A. Kruck
Affiliation:
Department of Physiology, University of Toronto, Toronto
*
Department of Physiology, Room 3318, Medical Sciences Building, University of Toronto, Toronto, Ontario, Canada M5S 1A8
Rights & Permissions [Opens in a new window]

Abstract:

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Application of molecular biological techniques and sensitive elemental analysis have produced new evidence implicating aluminum as an important factor in down regulation of neuronal protein metabolism. Aluminum in Alzheimer's disease may act by electrostatically crosslinking proteins, particularly the methionine containing histone Hl°, and DNA. The consequence of such crosslinking is reduced transcription of at least one neuron specific gene, the low molecular weight component of neurofilaments. In the superior temporal gyrus in Alzheimer's disease, down regulation of this gene occurs in approximately 86% of surviving neurons and, therefore, aluminum must be considered as having an active role in the pathogenesis. Epidemiological studies are reviewed that independently support the hypothesis that environmental aluminum is a significant risk factor. Preliminary evidence also suggests that a disorder in phosphorylation may be an important initiating factor.

Type
Research Article
Copyright
Copyright © Canadian Neurological Sciences Federation 1989

References

REFERENCES

1.Üeber, Döllken P. die Wirkung des Aluminum mit besonderer Berücksichtigung der durch das aluminum verursachten Lasionen im Zentralnervensystem. Naunyn-Schmiedebergs Arch exper Path Pharmakol 1897; 40: 50–120.Google Scholar
2.Spofforth, J. Case of aluminum poisoning. Lancet 1921; 1:1301.CrossRefGoogle Scholar
3.Klatzo, I, Wisniewski, H, Streicher, E. Experimental production of neurofibrillary degeneration 1: Light microscopic observations. J Neuropathol Exp Neurol 1965; 24: 187199.CrossRefGoogle Scholar
4.Terry, RD, Pena, C. Experimental production of neurofibrillary degeneration 2: Electromicroscopy, microscopy, phosphatase, histochemistry and electron probe analysis. J Neuropathol Exp Neurol 1965; 24: 200210.CrossRefGoogle Scholar
5.Kidd, M. Alzheimer’s disease: An electron microscopical study. Brain 1964; 87: 307.CrossRefGoogle ScholarPubMed
6.Perl, DP. Aluminum: Methodologie approaches. In: Sigei, H, Sigel, A, eds. Metal Ions in Biological Systems, Vol. 24, Aluminum and its Role in Biology. New York: Marcel Dekker, 1988: 259283.Google Scholar
7.Crapper, DR, Krishnan, SS. Dalton, AJ. Brain aluminum distribution in Alzheimer’s disease and experimental neurofibrillary degeneration. Science 1973; 180: 511513.CrossRefGoogle ScholarPubMed
8.Crapper, DR, Krishnan, SS. Aluminum, Quittkat S. neurofibrillary degeneration and Alzheimer disease. Brain 1976; 99: 6779.CrossRefGoogle Scholar
9.De Boni, U, Otvos, A, Scott, JW, et al.Neurofibrillary degeneration induced by systemic aluminum. Acta Neuropathol (Beri) 1976; 35: 285294.Google Scholar
10.Crapper, DR, Dalton, AJ. Alterations in short term retention, conditioned avoidance response acquisition and motivation following aluminum induced neurofibrillary degeneration. Physiol Behav 1973; 10: 925933.CrossRefGoogle ScholarPubMed
11.Crapper, DR, Dalton, AJ. Aluminum induced neurofibrillary degeneration, brain electrical activity and alterations in acquisition and retention. Physiol Behav 1973; 10: 935945.CrossRefGoogle ScholarPubMed
12.Petit, TL, Biederman, GB, Mcmullen, PA. Neurofibrillary degeneration, dendritic dying back, and learning-memory deficits after aluminum administration: implications for brain aging. Exp Neurol 1980; 67: 152162.CrossRefGoogle ScholarPubMed
13.Rabe, A, Lee, MH, Shek, J, et al.Learning deficit in immature rabbits with aluminum-induced neurofibrillary changes. Exp Neurol 1982; 76: 441446.CrossRefGoogle ScholarPubMed
14.Yokel, RA. Repeated systemic aluminum exposure effects on classical conditioning of the rabbit. Neurobehav Toxicol Teratol 1983; 5: 4146.Google ScholarPubMed
15.Trapp, GA, Miner, GD, Zimmerman, RL, et al.Aluminum levels in brain in Alzheimer’s disease. Biol Psychiatry 1978; 13: 709718.Google ScholarPubMed
16.Mcdermott, JR, Smith, AI, Iqbal, K, et al.Brain aluminum in aging and Alzheimer disease. Neurology 1979; 29: 809814.CrossRefGoogle ScholarPubMed
17.Crapper Mclachlan, DR, Krishnan, SS, Quittkat, S, et al.Brain aluminum in Alzheimer’s disease: Influence of sample size and case selection. Neurotoxicology 1980; 1: 2532.Google Scholar
18.Markesbery, WR, Ehmann, WD, Hussain, TIM, et al.Instrumental neutron activation analysis of brain aluminum in Alzheimer disease and aging. Ann Neurol 1981; 10: 511516.CrossRefGoogle ScholarPubMed
19.Markesbery, WR, Ehmann, WD, Bulk, Alauddin M. brain concentrations in Alzheimer’s disease. In: Wills MR, Savoy J, eds. Aluminum Analysis in Biological Materials. Charlottesville: University of Virginia Press, 1983: 103110.Google Scholar
20.Krishnan, SS, Harrison, JE, McLachlan, DRC. Origin and resolution of the aluminum controversy concerning Alzheimer neurofibrillary degeneration. Biological Trace Element Research 1987; 13: 3542.CrossRefGoogle Scholar
21.Traub, RD, Rains, TC, Garruto, RM, et al.Brain destruction alone does not elevate brain aluminum. Neurology 1981; 31: 986–90.CrossRefGoogle Scholar
22.Alfrey, AC, Legendre, GR, Kaehny, WD. The dialysis encephalopathy syndrome. Possible aluminum intoxication. ß Engl J Med 1976; 294: 184188.CrossRefGoogle ScholarPubMed
23.Hershey, CO, Hershey, LA, Varnes, A. et al.Cerebrospinal fluid trace element content in dementia: Clinical, radiological and pathologic correlations. Neurology 1983; 33: 13501353.CrossRefGoogle ScholarPubMed
24.Shore, D, Wyatt, RJ. Aluminum and Alzheimer’s disease. J Nerv Ment Dis 1983; 171: 553558.CrossRefGoogle ScholarPubMed
25.Perl, DP, Brody, AR. Alzheimer’s disease: X-ray spectrometric evidence of aluminum accumulation in neurofibrillary tangle-bearing neurons. Science 1980; 208: 297299.CrossRefGoogle ScholarPubMed
26.Perl, DP, Brody, AR.Perl DP, Brody AR. Detection of aluminum by SEM-x-ray spectrometry within neurofibrillary tangle bearing neurons of Alzheimer’s disease. Neurotoxicology 1980; 1: 133137.Google Scholar
27.Perl, DP, Pendlebury, WW. Aluminum accumulation in neurofibrillary tangle-bearing neurons of senile dementia, Alzheimer’s type: Detection by intraneuronal X-ray spectrometry studies of unstained tissue sections. J Neuropathol Exp Neurol 1984; 43: 349.CrossRefGoogle Scholar
28.Perl, DP, Gajdusek, DC, Garruto, RM, et al.Intraneuronal aluminum accumulation in amyotrophic lateral sclerosis and parkinsonism dementia of Guam. Science 1982; 217: 10531054.CrossRefGoogle ScholarPubMed
29.Garruto, RM, Fukaton, R, Yanigahara, R, et al.Imaging of aluminum and calcium in neurofibrillary tangle-bearing neurons in Parkinsonism dementia of Guam. Proc Natl Acad Sci USA 1948; 81: 18751879.CrossRefGoogle Scholar
30.Kobayashi, S, Hirota, N, Saito, K, et al.Aluminum accumulation in tangle-bearing neurons of Alzheimer’s disease with Balint’s syndrome in a long-term aluminum refiner. Acta Neuropathol (Beri) 1987; 74: 4752.CrossRefGoogle Scholar
31.Mclachlan Crapper, DR, Mclachlan, CD, Krishnan, B, et al.Aluminum and calcium in Guam, Palau and Jamaica: Implications for amyotrophic lateral sclerosis and Parkinsonism-dementia syndromes of Guam. Environmental Geochemistry and Health (in press).Google Scholar
32.Grundke-Iqbal, I, Iqbal, K, Quinlan, M., et al.Microtubule-associated protein Tau: A component of Alzheimer paired helical filaments. J Biol Chem 1986; 261: 60846089.CrossRefGoogle Scholar
33.Selkoe, DJ. Altered structural proteins in plaques and tangles: What do they tell us about the biology of Alzheimer’s disease? Neurobiol Aging 1986; 7: 425432.CrossRefGoogle ScholarPubMed
34.Mori, H, Kondo, J, Ihara, Y. Ubiquitin is a component of paired helical filaments in Alzheimer’s disease. Science 1987; 235: 16411644.CrossRefGoogle ScholarPubMed
35.Sternberger, NH, Sternberger, LA, Ulrich, J. Aberrant neurofilament phosphorylation in Alzheimer’s disease. Proc Natl Acad Sci USA 1985; 82: 42744276.CrossRefGoogle Scholar
36.Duckett, S, Galle, P. Mise en évidence de l’aluminum dans les plaques de la maladie d’Alzheimer; Etudie a la microsonde de Castaing. C R Seances Acad Sci [D] 1976; 282: 393395.Google Scholar
37.Candy, JM, Klinowski, RH, Perry, EK, et al.Aluminosilicates and senile plaque formation in Alzheimer’s disease. Lancet 1986; 1: 354357.CrossRefGoogle ScholarPubMed
38.Fleming, J, Joshi, JG. Ferritin: Isolation of aluminum-ferritin complex from brain. Proc Natl Acad Sci USA 1987; 84: 78667870.CrossRefGoogle ScholarPubMed
39.Crapper, DR, Quittkat, S, Krishnan, SS, et al.Intranuclear aluminum content in Alzheimer’s disease, dialysis encephalopathy. Acta Neuropathol (Bed) 1980; 50: 1924.CrossRefGoogle ScholarPubMed
40.Crapper, DR, Quittkat, S, De Boni, U. Altered chromatin conformation in Alzheimer’s disease. Brain 1979; 102: 483495.CrossRefGoogle ScholarPubMed
41.Lewis, PN, Lukiw, WJ, De Boni, U, et al.Changes in chromatin structure associated with Alzheimer’s disease. J Neurochem 1981; 37: 11931202.CrossRefGoogle ScholarPubMed
42.Mclachlan Crapper, DR, Lewis, PN, Lukiw, WJ, et al.Chromatin structure in dementia. Ann Neurol 1984; 15: 329334.CrossRefGoogle Scholar
43.Mclachlan Crapper, DR, Lukiw, WJ, Wong, AL, et al.Selective messenger RNA reduction in Alzheimer’s disease. Mol Brain Res 1988; 3: 255262.CrossRefGoogle Scholar
44.Krekoski, CA, Clark, AW, Parhad, IM, et al.Altered expression of neurofilament and other neuronal mRNAs in Alzheimer (AD) cortex. Satellite Meeting of the International Society for Molecular Biology: Molecular and Cellular Biology of Intermediate Filaments, Montreal, 1988; Abstract #46.Google Scholar
45.Lukiw, WJ, Kruck, TPA, Mclachlan Crapper, DR, Alteration in human linker histone-DNA binding in the presence of aluminum salts in vitro and in Alzheimer’s disease. Neurotoxicology 1987; 8: 291302.Google ScholarPubMed
46.Muma, NA, Troncoso, JC, Hoffman, P, et al.Aluminum neurotoxicity-altered expression of cytoskeletal genes. Mol Brain Res 1988; 3: 115122.CrossRefGoogle Scholar
47.Parhad, IM, Krekoski, CA, Mathew, A, et al.Neurofilament gene expression in aluminum myelopathy. Symposium on Molecular and Cellular Biology of Intermediate Filaments, Montreal, 1988; Abstract.Google Scholar
48.Still, CN, Kelley, P. On the incidence of primary degenerative dementia vs. water fluoride content in South Carolina. Neurotoxicology 1980; 4: 125131.Google Scholar
49.Vogt, T. Water quality and health - study of a possible relationship between aluminum in drinking water and dementia (Sostale og okonomiske studier 61, English abstract), Oslo: Central Bureau of Statistics of Norway. 1986.Google Scholar
50.Flaten, TP. Geographical associations between aluminum in drinking water and registered death rates with dementia (including Alzheimer’s disease) in Norway. Proceedings from the Second International Symposium on Geochemistry and Health, London (in press).Google Scholar
51.Leventhal, GH. Alzheimer’s disease and environmental aluminum in Maryville and Morristown, Tennessee, Ph.D. Thesis, University of Tennessee, 1986.Google Scholar
52.Martyn, CN, Osmond, C, Edwardson, JA, et al.Geographical relation between Alzheimer’s disease and aluminum in drinking water. Lancet 1989; 1: 5962.CrossRefGoogle ScholarPubMed
53.Gruca, S, Wisniewski, HM. Cytochemical study on the effect of aluminum on neuronal golgi apparatus and lysosomes. Acta Neuropathol (Beri) 1984; 63: 287295.CrossRefGoogle Scholar
54.Galle, p, Berry, JP, Duckett, S. Electron microprobe ultrastructural localization of aluminum in rat brain. Acta Neuropathol (Beri) 1980; 49: 245247.CrossRefGoogle ScholarPubMed
55.Bowen, DM. Davidson, AN. Changes in brain lysosomal activity, neurotransmitter related enzymes and other proteins in senile dementia. In: Katzman, R, Terry, R, Bick, K, eds. Alzheimer’s Disease: Senile Dementia and Related Disorders. New York: Raven Press, 1978: 421425.Google Scholar
56.Kruck, TPA, Berry, DRC. Aluminum as a pathogenic factor in senile dementia of Alzheimer type: Ion specific chelation. Alzheimer Dis Assoc Disord 1988; 2: 209.CrossRefGoogle Scholar
57.Kruck, TPA. Mclachlan, DRC. Aluminum as a pathogenic factor in senile dementia of the Alzheimer type: Ion specific chelation. In: Iqbal, K, Wisniewski, HM, Winblad, B, eds. Alzheimer’s Disease and Related Disorders. New York: Alan R. Liss (in press).Google Scholar
58.Finnegan, MM, Lutz, TG, Nelson, O, et al.Neutral water soluble post-transition metal chelate complexes of medical interest: Aluminum and gallium tris (3-hydroxy-4-pyronates). Inorg Chem 1987; 26: 21712176.CrossRefGoogle Scholar
59.De Boni, U, Scott, J, Crapper, DR. Intracellular Aluminum Binding: A histochemical study. Histochemie 1974; 40: 3137.CrossRefGoogle Scholar
60.Wen, GY, Wisniewski, HM. Histochemical localization of aluminum in the rabbit CNS. Acta Neuropathol (Beri) 1985; 68:175184 .CrossRefGoogle ScholarPubMed
61.Kosik, KS, Duffy, LK, Dowling, MM, et al.Microtubule-associated protein 2: Monoclonal antibodies demonstrate the selective incorporation of certain epitopes into Alzheimer neurofibrillary tangles. Proc Natl Acad Sci USA 1984; 81: 79417945.CrossRefGoogle ScholarPubMed
62.Siegle, N, Haug, A. Aluminum interactions with calmodulin. Evidence for altered structure and function from optical and enzymatic studies. Biochem Biophys Acta 1983; 744: 3645.Google Scholar
63.Lukiw, WJ, Kruck, TPA, Mclachlan Crapper, DR. Aluminum and the nucleus of nerve cells. Lancet 1 1989: 781.CrossRefGoogle ScholarPubMed
64.Johnson, GVW, Jope, RS. Phosphorylation of rat brain cytoskeletal proteins is increased after orally administered aluminum.Brain Res 1988; 456: 95103.CrossRefGoogle ScholarPubMed
65.Johnson, GVW, Jope, RS. Aluminum alters cyclic AMP and cyclic GMP levels but not presynaptic cholinergic markers in rat brain in vivo. Brain Res 1987; 403: 16.CrossRefGoogle Scholar