Hostname: page-component-77c89778f8-cnmwb Total loading time: 0 Render date: 2024-07-22T05:31:32.294Z Has data issue: false hasContentIssue false

Mevalonate Prevents Lovastatin-Induced Apoptosis in Medulloblastoma Cell Lines

Published online by Cambridge University Press:  02 December 2014

Wei Wang
Affiliation:
Department of Pathology, College of Medicine, University of Saskatchewan, Saskatoon, SK, Canada
Robert J.B. Macaulay
Affiliation:
Department of Pathology, College of Medicine, University of Saskatchewan, Saskatoon, SK, Canada
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.
Background:

3-hydroxy-3-methylglutaryl coenzyme A reductase (HMG-CoA reductase) is a key rate-limiting enzyme in the mevalonate pathway, which generates precursors for cholesterol biosynthesis and the production of non-steroidal mevalonate derivatives that are involved in a number of growth-regulatory processes. We have reported that lovastatin, a competitive inhibitor of HMG-CoA reductase, not only inhibits medulloblastoma proliferation in vitro, but also induces near-complete cell death via apoptosis. The present study explores some of the pathways which may be involved in lovastatin-induced apoptosis.

Methods:

Medulloblastoma cell lines were exposed in vitro to lovastatin with or without mevalonate, and document the effects using morphology, flow cytometry, DNA electrophoresis and Northern analysis.

Results:

1) Mevalonate prevents apoptosis when co-incubated with lovastatin, or when administered to lovastatin-pretreated cells. 2) Mevalonate restores the lovastatin-arrested cell cycle, allowing S phase entry. 3) Mevalonate does not prevent lovastatin-induced apoptosis after a critical duration of lovastatin pretreatment. For cell lines Daoy and UW228 this was 24 hours, and for D283 Med and D341 Med it was 48 hours. 4) Increases in HMG-CoA reductase mRNA levels induced by lovastatin are abrogated by co-incubation with lovastatin and mevalonate.

Conclusion:

These results confirm that lovastatin inhibition of this enzyme results in blockage of the mevalonate pathway, and that such a block is a critical step in the mechanism of lovastatin-induced apoptosis.

Résumé

RÉSUMÉIntroduction:

La 3-hydroxy-3-méthylglutaryl coenzyme a réductase (HMG-CoA réductase) estune enzyme clé, qui a un rôle d’étape cinétiquement limitante dans la voie du mévalonate et qui génère des précurseurs pour la biosynthèse du cholestérol et la production de dérivés non stéroïdiens du mévalonate impliqués dans certains processus de régulation de la croissance. Nous avons rapporté que la lovastatine, un inhibiteur compétitif de l’HMG-CoA réductase, non seulement inhibe la prolifération du médulloblastome in vitro, mais également induit presque complètement la mort cellulaire via l’apoptose. Cette étude explore certaines des voies qui pourraient être impliquées dans l’apoptose induite par la lovastatine.

Méthodes:

Les effets de l’exposition in vitro de lignées de cellules de médulloblastome à la lovastatine avec ou sans mévalonate ont été évalués par des etudes morphologiques, par cytométrie de flux, électrophorèse de l’ADN et analyse de Northern.

Résultats:

1) Le mévalonate prévient l’apoptose quand les cellules sont coincubées avec la lovastatine ou quand il est administré à des cellules prétraitées par la lovastatine. 2) Le mévalonate rétablit le cycle cellulaire interrompu par la lovastatine, permettant une entrée en phase S. 3) Le mévalonate ne prévient pas l’apoptose induite par la lovastatine après un temps de prétraitement critique par la lovastatine. Ce temps de prétraitement était de 24 heures pour les lignées cellulaires Daoy et UW228, et de 48 heures pour les lignées D283 Med et D341 Med. 4) L’augmentation des niveaux d’ARNm de l’HMG-CoA réductase induite par la lovastatine est abolie par la coincubation avec la lovastatine et le mévalonate.

Conclusions:

Ces résultats confirment que l’inhibition de cette enzyme par la lovastatine provoque un blocage de la voie métabolique du mévalonate et que ce blocage est une étape critique dans le mécanisme de l’apoptose induite par la lovastatine.

Type
Experimental Neurosciences
Copyright
Copyright © The Canadian Journal of Neurological 1999

References

1. Boring, CC, Squires, TS and Tong, T. Cancer statistics, 1991 [published erratum appears in CA Cancer J Clin 1991 Mar-Apr;41(2):111]. Ca Cancer J Clin 1991; 41: 1936.Google Scholar
2. Jay, V and Becker, LE. Brain tumors. Curr Opin Neurol Neurosurg 1990; 3: 934942.Google Scholar
3. Schoenberg, BS, Schoenberg, DG, Christine, BW and Gomez, MR. The epidemiology of primary intracranial neoplasms of childhood. Mayo Clin Proc 1976; 51: 5156.Google Scholar
4. Packer, RJ. Outcome for children with medulloblastoma treated withradiation and cisplatin, CCNU and vincristine chemotherapy. J Neurosurg 1994; 81: 690698.Google Scholar
5. Rorke, LB, Trojanowski, JQ, Lee, VM et al. Primitiveneuroectodermal tumors of the central nervous system. Brain Pathol 1997; 7: 765–84.Google Scholar
6. Torres, CF, Rebsamen, S, Silber, JH, et al. Surveillance scanning ofchildren with medulloblastoma. N Engl J Med 1994; 330: 892–5.Google Scholar
7. Tomlinson, FH, Scheithauer, BW, Meyer, FB et al. Medulloblastoma:I. Clinical, diagnostic, and therapeutic overview. J Child Neurol 1992; 7: 142–55.CrossRefGoogle ScholarPubMed
8. Nishiyama, K, Funakoshi, S, Izumoto, S et al. Long-term effects ofradiation for medulloblastoma on intellectual and physical development. A case report of monozygotic twins. Cancer 1994; 73: 2450–5.Google Scholar
9. Tishler, DM, Weinberg, KI, Sender, LS et al. Multidrug resistancegene expression in pediatric primitive neuroectodermal tumors of the central nervous system. J Neurosurg 1992; 76: 507–12.Google Scholar
10. Tobert, JA, Hitzenberger, G, Kukovetz, WR et al. Rapid andsubstantial lowering of human serum cholesterol by mevinolin (MK-803), an inhibitor of hydroxymethylglutaryl-coenzyme A reductase. Atherosclerosis 1982; 41: 61–5.Google Scholar
11. Poon, RY, Toyoshima, H and Hunter, T. Redistribution of the CDKinhibitor p27 between different cyclin. CDK complexes in the mouse fibroblast cell cycle and in cells arrested with lovastatin or ultraviolet irradiation. Mol Biol Cell 1995; 6: 1197–213.Google Scholar
12. Goldstein, JL and Brown, MS. Regulation of the mevalonatepathway. Nature 1990; 343: 425–30.Google Scholar
13. Hancock, JF, Magee, AI, Childs, JE and Marshall, CJ. All ras proteinsare polyisoprenylated but only some are palmitoylated. Cell 1989; 57: 1167–77.CrossRefGoogle Scholar
14. O’Donnell, MP, Kasiske, BL, Kim, Y et al. The mevalonate pathway:importance in mesangial cell biology and glomerular disease. Miner Electrolyte Metab 1993; 19: 173–9.Google Scholar
15. Keyomarsi, K, Sandoval, L, Band, V and Pardee, AB. Synchronizationof tumor and normal cells from G1 to multiple cell cycles bylovastatin. Cancer Res 1991; 51: 3602–9.Google Scholar
16. Khosravi, FR, Cox, AD, Kato, K and Der, CJ. Protein prenylation: keyto ras function and cancer intervention? Cell Growth Differ 1992; 3: 461–9.Google Scholar
17. Law, RE, Stimmel, JB, Damore, MA et al. Lipopolysaccharide-induced NF-kappa B activation in mouse 70Z/3 pre-B lymphocytes is inhibited by mevinolin and 5’-methylthioadenosine: roles of protein isoprenylation and carboxyl methylation reactions. Mol Cell Biol 1992; 12: 103–11.Google Scholar
18. Dimitroulakos, J, Pienkowska, M, Squire, J et al. Differential displayof mRNAs using PCR (DD-PCR) to identify genes involved in the growth and differentiation of human neuroblastomas (abstract). Brain Pathol 1994; 4: 427.Google Scholar
19. Newman, A, Clutterbuck, RD, Powles, RL and Millar, JL. Selectiveinhibition of primary acute myeloid leukemia cell growth by lovastatin [corrected and republished in Leukemia 1994 Nov;8(11):2022-9]. Leukemia 1994; 8: 274–80.Google Scholar
20. Dimitroulakos, J, Nohynek, D, Backway, KL et al. Increasedsensitivity of acute myeloid leukemias to lovastatin-induced apoptosis: a potential therapeutic approach. Blood 1999; 93: 1308–18.Google Scholar
21. Maltese, WA, Defendini, R, Green, RA et al. Suppression of murineneuroblastoma growth in vivo by mevinolin, a competitive inhibitor of 3-hydroxy-3-methylglutaryl-coenzyme A reductase. J Clin Invest 1985; 76: 1748–54.CrossRefGoogle ScholarPubMed
22. Macaulay, RJB, Wang, W, Dimitroulakos, J et al. Lovastatin-inducedapoptosis of human medulloblastoma cell lines in vitro. J Neuro-Oncol 1999; 42: 111.Google Scholar
23. Bansal, N, Houle, AG and Melnykovych, G. Comparison ofdexamethasone and lovastatin (mevinolin) as growth inhibitors in cultures of T-cell derived human acute leukemia lines (CEM). Leuk Res 1989; 13: 875–82.Google Scholar
24. Perez, SD and Mollinedo, F. Inhibition of isoprenoid biosynthesisinduces apoptosis in human promyelocytic HL-60 cells. BiochemBiophys Res Commun 1994; 199: 1209–15.Google Scholar
25. Jones, KD, Couldwell, WT, Hinton, DR et al. Lovastatin inducesgrowth inhibition and apoptosis in human malignant glioma cells. Biochem Biophys Res Commun 1994; 205: 1681–7.Google Scholar
26. Keles, GE, Berger, MS, Srinivasan, J et al. Establishment andcharacterization of four human medulloblastoma-derived celllines. Oncol Res 1995; 7: 493503.Google Scholar
27. Ramharack, R, Tam, SP and Deeley, RG. Characterization of threedistinct size classes of human 3-hydroxy-3-methylglutaryl coenzyme A reductase mRNA: expression of the transcripts inhepatic and nonhepatic cells. DNA Cell Biol 1990; 9: 677–90.Google Scholar
28. Ercolani, L, Florence, B, Denaro, M and Alexander, M. Isolation andcomplete sequence of a functional human glyceraldehyde-3-phosphate dehydrogenase gene. J Biol Chem 1988; 263: 15335–41.Google Scholar
29. Wong, H, Anderson, WD, Cheng, T and Riabowol, KT. Monitoringm RNA expression by polymerase chain reaction: the “primer-dropping” method. Anal Biochem 1994; 223: 251–8.Google Scholar
30. Dimitroulakos, J and Yeger, H. HMG-CoA reductase mediates thebiological effects of retinoic acid on human neuroblastoma cells: lovastatin specifically targets P-glycoprotein-expressing cells. Nat Med 1996; 2: 326–33.Google Scholar
31. Finegold, AA, Schafer, WR, Rine, J et al. Common modifications oftrimeric G proteins and ras protein: involvement of polyisoprenylation. Science 1990; 249: 165–9.Google Scholar
32. Wang, W and Macaulay, RJB. Apoptosis of medulloblastoma cells invitro follows inhibition of farnesylation using manumycin A. Int J Cancer 1999; 82: 430434.Google Scholar
33. Pietsch, T, Scharmann, T, Fonatsch, C et al. Characterization of fivenew cell lines derived from human primitive neuroectodermal tumors of the central nervous system. Cancer Res 1994; 54: 3278–87.Google Scholar
34. Green, DR, Mahboubi, A, Nishioka, W et al. Promotion and inhibitionof activation-induced apoptosis in T-cell hybridomas by oncogenes and related signals. Immunol Rev 1994; 142: 321–42.Google Scholar
35. Askew, DS, Ashmun, RA, Simmons, BC and Cleveland, JL. Constitutive c-myc expression in an IL-3-dependent myeloid cell line suppresses cell cycle arrest and accelerates apoptosis. Oncogene 1991; 6: 1915–22.Google Scholar
36. Evan, GI, Wyllie, AH, Gilbert, CS et al. Induction of apoptosis infibroblasts by c-myc protein. Cell 1992; 69: 119–28.CrossRefGoogle ScholarPubMed
37. Hermeking, H and Eick, D. Mediation of c-Myc-induced apoptosisby p53. Science 1994; 265: 2091–3.Google Scholar
38. Duffy, MJ. Cellular oncogenes and suppressor genes as prognosticmarkers in cancer. Clin Biochem 1993; 26: 439–47.Google Scholar
39. Munday, NA, Vaillancourt, JP, Ali, A et al. Molecular cloning and pro-apoptotic activity of ICErelII and ICErelIII, members of the ICE/CED-3 family of cysteine proteases. J Biol Chem 1995; 270: 15870–6.Google Scholar
40. Nicholson, DW, Ali, A, Thornberry, NA et al. Identification andinhibition of the ICE/CED-3 protease necessary for mammalianapoptosis. Nature 1995; 376: 3743.CrossRefGoogle Scholar
41. Sleath, PR, Hendrickson, RC, Kronheim, SR et al. Substratespecificity of the protease that processes human interleukin-1 beta. J Biol Chem 1990; 265: 14526–8.Google Scholar