Skip to main content Accessibility help
×
Home

Hyperfamiliarity in Amnestic and Vascular Mild Cognitive Impairment

  • Pei Shi Chia (a1) (a2), Shahul Hameed (a1) (a2) (a3), Kok Pin Yong (a1) (a2), Ling Ling Chan (a4) (a3) and Simon Kang Seng Ting (a1) (a2) (a3)...

Abstract

Objective: Hyperfamiliarity is a phenomenon where new stimuli are perceived as familiar. Previous studies have demonstrated familiarity disorder in mild cognitive impairment (MCI), but mostly from the perspective of a neuropsychological approach, and the exact correlation of MCI aetiologies with the phenomenon remains uncertain. Based on current evidence suggesting a frontal-subcortical pathway contributing to familiarity processing, we hypothesize that individuals with a vascular aetiology of MCI will likely suffer more familiarity deficits. This study aims to examine the real-life hyperfamiliarity symptoms in amnestic versus vascular MCI. Methods: Informants of 11 amnestic and 9 vascular cognitive impairment patients were interviewed about the frequency of hyperfamiliarity symptoms in the previous month. MRI brain images of vascular cognitive impairment patients were analysed as well. Results: Patients with vascular cognitive impairment with no dementia (VCIND) showed a significantly higher frequency of hyperfamiliarity for people but not places or objects. Within VCIND patients, overall basal ganglia hyperintensities, particularly in the putamen, were found to significantly correlate to hyperfamiliarity. Conclusions: Patients with VCIND suffer more real-life hyperfamiliarity during people recognition compared to patients with amnestic mild cognitive impairment (aMCI), despite a comparative global decline in cognitive. This is likely due to impaired memory retrieval and matching processes resulting from subcortical ischaemic lesions.

Hyperfamiliarité dans le déficit cognitif léger de type amnésique et de type vasculaire. Objectif: L’hyperfamiliarité est un phénomène dans lequel tout nouveau stimulus est perçu comme étant familier. Des études antérieures ont montré la présence du trouble de la familiarité dans le déficit cognitif léger (DCL), principalement du point de vue d’une approche neuropsychologique, et la corrélation exacte entre les étiologies de la DCL et ce phénomène demeure obscure. Considérant les données actuelles suggérant qu’une voie fronto-sous-corticale jouerait un rôle dans la familiarité, nous avons émis l’hypothèse que les individus dont le DCL est d’origine vasculaire présentent vraisemblablement plus de déficits de la familiarité. Le but de cette étude était d’examiner les symptômes concrets d’hyperfamiliarité chez des patients atteints de DCL de type amnésique par rapport à ceux atteints de DCL de type vasculaire. Méthodologie: Nous avons rencontré des proches de 11 patients atteints de DCL de type amnésique et de 9 patients atteints de DCL de type vasculaire pour connaître la fréquence des symptômes d’hyperfamiliarité au cours du mois précédent. Nous avons également analysé l’IRM du cerveau de ces patients. Résultats: Les patients atteints d’un déficit cognitif d’origine vasculaire sans démence (DCVSD) présentaient une fréquence significativement plus élevée d’hyperfamiliarité pour les personnes mais pas pour les lieux ou les objets. Parmi les patients atteints de DCVSD nous avons constaté qu’en général il existait une corrélation significative entre l’hyperfamiliarité et les hyperintensités au niveau des noyaux gris centraux, particulièrement dans le putamen. Conclusions: Les patients atteints d’un DCVSD présentent plus d’hyperfamiliarité pour la reconnaissance des personnes comparés aux patients présentant un déficit cognitif léger de type amnésique, malgré un déclin cognitif global comparable. Ceci est vraisemblablement dû à un processus de remémoration et de jumelage altéré résultant de lésions ischémiques sous-corticales.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Hyperfamiliarity in Amnestic and Vascular Mild Cognitive Impairment
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Hyperfamiliarity in Amnestic and Vascular Mild Cognitive Impairment
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Hyperfamiliarity in Amnestic and Vascular Mild Cognitive Impairment
      Available formats
      ×

Copyright

Corresponding author

Correspondence to: Pei Shi Chia, Singapore General Hospital, Outram Road, Singapore 169608, Singapore. E-mail: stephanie.chia.p.s@sgh.com.sg.

References

Hide All
1. Amlerova, J, Cavanna, AE, Bradac, O, Javurkova, A, Marusic, P. Hyperfamiliarity in patients with temporal lobe epilepsy. Epilepsy Behav. 2012;24(3):332-335. Epub ahead of print May 9.
2. Balota, DA, Cortese, MJ, Duchek, JM, Adams, D, Roediger, HL, McDermott, KB, et al. Veridical and false memories in healthy older adults and in dementia of the Alzheimer’s type. Cogn Neuropsychol. 1999;16(3-5):361-384. Available at: http://www.psych.wustl.edu/coglab/publications/BalotaEtAlCogNeuro1999.pdf.
3. Gainotti, G. Face familiarity feelings, the right temporal lobe and the possible underlying neural mechanisms. Brain Res Rev. 2007;56:214-235. Epub ahead of print Aug 3.
4. Moulin, CJ, Conway, MA, Thompson, RG, James, N, Jones, RW. Disordered memory awareness: recollective confabulation in two cases of persistent déjà vecu. Neuropsychologia. 2005;43(9):1362-1378.
5. Waldie, BD, See, ST. Remembering words never presented: false memory effects in dementia of the Alzheimer type. Neuropsychol Dev Cogn B Aging Neuropsychol Cogn. 2003;10(4):281-297.
6. Vuilleumier, P, Mohr, C, Valenza, N, Wetzel, C, Landis, T. Hyperfamiliarity for unknown faces after left lateral temporo-occipital venous infarction: a double dissociation with prosopagnosia. Brain. 2003;126(Pt 4):889-907. Available at: http://brain.oxfordjournals.org/content/126/4/889.long.
7. Devinsky, O, Davachi, L, Santchi, C, Quinn, BT, Staresina, BP, Thesen, T. Hyperfamiliarity for faces. Neurology. 2010;74(12):970-974. Available at: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2848104/.
8. Butler, KM, Mcdaniel, MA, Dornburg, CC, Price, AL, Roediger, HL. Age differences in veridical and false recall are not inevitable: the role of frontal lobe function. Psychon Bull Rev. 2004;11(5):921-925.
9. Lavoie, DJ, Willoughby, L, Faulkner, K. Frontal lobe dysfunction and false memory susceptibility in older adults. Exp Aging Res. 2006;32(1):1-21.
10. Melo, B, Winocur, G, Moscovitch, M. False recall and false recognition: an examination of the effects of selective and combined lesions to the medial temporal lobe/diencephalon and frontal lobe structures. Cogn Neuropsychol. 1999;16(3-5):343-359.
11. Davachi, L, Mitchell, JP, Wagner, AD. Multiple routes to memory: distinct medial temporal lobe processes build item and source memories. Proc Natl Acad Sci U S A. 2003;100:2157-2162. Epub ahead of print Feb 10. Available at: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC149975/.
12. Gonsalves, BD, Kahn, I, Curran, T, Norman, KA, Wagner, AD. Memory strength and repetition suppression: multimodal imaging of medial temporal cortical contributions to recognition. Neuron. 2005;47(5):751-761. Available at: http://www.cell.com/neuron/fulltext/S0896-6273(05)00607-0.
13. Schacter, DL, Slotnick, SD. The cognitive neuroscience of memory distortion. Neuron. 2004;44(1):149-160. Available at: http://www.cell.com/neuron/fulltext/S0896-6273(04)00527-6.
14. Algarabel, S, Fuentes, M, Escudero, J, Pitarque, A, Peset, V, Mazon, JF, et al. Recognition memory deficits in mild cognitive impairment. Neuropsychol Dev Cogn B Aging Neuropsychol Cogn. 2012;19(5):608-619. Epub ahead of print Jan 17.
15. Serra, L, Bozzali, M, Cercignani, M, Perri, R, Fadda, L, Caltagirone, C, et al. Recollection and familiarity in amnesic mild cognitive impairment. Neuropsychology. 2010;24(3):316-326.
16. Wolk, DA, Signoff, ED, DeKosky, ST. Recollection and familiarity in amnestic mild cognitive impairment: a global decline in recognition memory. Neuropsychologia. 2008;46(7):1965-1978. Epub ahead of print Feb 2. Available at: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2519866/.
17. Grundman, M, Petersen, RC, Ferris, SH, Thomas, RG, Aisen, PS, Bennett, DA, et al. Mild cognitive impairment can be distinguished from Alzheimer disease and normal aging for clinical trials. Arch Neurol. 2004;61(1):59-66. Available at: http://archneur.jamanetwork.com/article.aspx?articleid=785241.
18. Stephan, BCM, Matthews, FE, Khaw, KT, Dufouil, C, Brayne, C. Beyond mild cognitive impairment: vascular cognitive impairment, no dementia (VCIND). Alzheimers Res Ther. 2009;1(1):4.
19. American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders. Washington, DC: American Psychiatric Association; 2000.
20. McPherson, SE, Cummings, JL. Neuropsychological aspects of vascular dementia. Brain Cogn. 1996;31(2):269-282.
21. Paul, RH, Cohen, RA, Ott, BR, Zawacki, T, Moser, DJ, Davis, J, et al. Cognitive and functional status in two subtypes of vascular dementia. NeuroRehabilitation. 2000;15(3):199-205.
22. Hachinski, V, Iadecola, C, Petersen, RC, Breteler, MM, Nyenhuis, DL, Black, SE, et al. National Institute of Neurological Disorders and Stroke–Canadian Stroke Network vascular cognitive impairment harmonization standards. Stroke. 2006;37(9):2220-2241. Epub ahead of print Aug 17. Available at: http://stroke.ahajournals.org/content/37/9/2220.long.
23. Nordlund, A, Rolstad, S, Klang, O, Lind, K, Hansen, S, Wallin, A. Cognitive profiles of mild cognitive impairment with and without vascular disease. Neuropsychology. 2007;21(6):706-712.
24. Nyenhuis, DL, Gorelick, PB. Diagnosis and management of vascular cognitive impairment. Curr Atheroscler Rep. 2007;9(4):326-332.
25. Markesbery, WR, Schmitt, FA, Kryscio, RJ, Davis, DG, Smith, CD, Wekstein, DR. Neuropathologic substrate of mild cognitive impairment. Arch Neurol. 2006;3(1):38-46. Available at http://archneur.jamanetwork.com/article.aspx?articleid=790287.
26. Bäckman, L, Small, BJ, Fratiglioni, L. Stability of the preclinical episodic memory deficit in Alzheimer’s disease. Brain. 2001;124(Pt 1):96-102. Available at: http://brain.oxfordjournals.org/content/124/1/96.long.
27. Hodges, JR. Alzheimer’s centennial legacy: origins, landmarks and the current status of knowledge concerning cognitive aspects. Brain. 2006;129(Pt 11):2811-2822. Available at: http://brain.oxfordjournals.org/content/129/11/2811.long.
28. Bäckman, L. Memory and cognition in preclinical dementia: What we know and what we do not know. Can J Psychiatry. 2008;53(6):354-360.
29. Kwok, KSH, Hameed, S, Tay, SY, Koay, WI, Koh, S, Gabriel, C, et al. Hyperfamiliarity in dementia and mild cognitive impairment. Ann Acad Med Singapore. 2015;44(9):342-349.
30. Bowler, JV. Modern concept of vascular cognitive impairment. Br Med Bull. 2007;83(1):291-305. Epub ahead of print Aug 4. Available at: http://bmb.oxfordjournals.org/content/83/1/291.long.
31. Petersen, RC, Morris, JC. Mild cognitive impairment as a clinical entity and treatment target. Arch Neurol. 2005;62(7):1160-1163; discussion 1167.
32. Scheltens, P, Barkhof, F, Leys, D, Pruvo, JP, Nauta, JJ, Vermersch, P, et al. A semiquantative rating scale for the assessment of signal hyperintensities on magnetic resonance imaging. J Neurol Sci. 1993;114(1):7-12.
33. Ishii, N, Nishihara, Y, Imamura, T. Why do frontal lobe symptoms predominate in vascular dementia with lacunes? Neurology. 1986;36(3):340-345.
34. Alexander, GE, Crutcher, MD, DeLong, MR. Basal ganglia–thalamocortical circuits: parallel substrates for motor, oculomotor, “prefrontal” and “limbic” functions. Prog Brain Res. 1990;85:119-146.
35. Calabresi, P, Picconi, B, Tozzi, A, Ghiglieri, V. Interaction between basal ganglia and limbic circuits in learning and memory processes. Parkinsonism Relat Disord. 2016;22(Suppl 1):S65-S68. Epub ahead of print Sep 5, 2015.
36. Clos, M, Schwarze, U, Gluth, S, Bunzeck, S, Sommer, T. Goal- and retrieval-dependent activity in the striatum during memory recognition. Neuropsychologia. 2015;72:1-11. Epub ahead of print Apr 11.
37. Cairo, TA, Liddle, PF, Woodward, TS, Ngan, ET. The influence of working memory load on phase specific patterns of cortical activity. Brain Res Cogn Brain Res. 2004;21(3):377-387.
38. Shu, SY, Song, C, Wu, Y, Mo, L, Guo, Z, Liu, SH, et al. Learning and memory deficits caused by a lesion in the medial area of the left putamen in the human brain. CNS Spectr. 2009;14(9):473-476.
39. Voytek, B, Knight, RT. Prefrontal cortex and basal ganglia contributions to visual working memory. Proc Natl Acad Sci U S A. 2010;107(42):18167-18172. Epub ahead of print Oct 4. Available at: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2964236/.
40. Baier, B, Karnath, HO, Dieterich, M, Birklein, F, Heinze, C, Müller, NG. Keeping memory clear and stable—the contribution of human basal ganglia and prefrontal cortex to working memory. J Neurosci. 2010;30(29):9788-9792. Available at: http://www.jneurosci.org/content/30/29/9788.long.
41. Shohamy, D, Wagner, AD. Integrating memories in the human brain: hippocampal-midbrain encoding of overlapping events. Neuron. 2008;60(2):378-389. Available at: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2628634/.
42. Skinner, EI, Fernandes, MA. Neural correlates of recollection and familiarity: a review of neuroimaging and patient data. Neuropsychologia. 2007;45(10):2163-2179. Epub ahead of print Mar 12.
43. Desikan, RS, Cabral, HJ, Hess, CP, Dillon, WP, Glastonbury, CM, Weiner, MW, et al. Automated MRI measures identify individuals with mild cognitive impairment and Alzheimer’s disease. Brain. 2009;132:2048-2057. Epub ahead of print Jun 8, 2010. Available at: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2902697/.
44. McEvoy, LK, Fennema-Notestine, C, Roddey, JC, Hagler, DJ Jr, Holland, D, et al. Alzheimer disease: quantitative structural neuroimaging for detection and prediction of clinical and structural changes in mild cognitive impairment. Radiology. 2009;251(1):195-205. Epub ahead of print Feb 6. Available at: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2663582/.
45. Csukly, G, Siraly, E, Fodor, Z, Horvath, A, Salacz, P, Hidasi, Z, Csibri, E, et al. The differentiation of amnestic type MCI from the non-amnestic types by structural MRI. Front Aging Neurosci. 2016;8:52. Available at: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4811920/.
46. Damasio, AR, Damasio, H, Van Hoesen, GW. Prosopagnosia: anatomic basis and behavioral mechanisms. Neurology. 1982;32(4):331-341.
47. Gauthier, I, Behrmann, M, Tarr, MJ. Can face recognition really be dissociated from object recognition? J Cogn Neurosci. 1999;11(4):349-370.
48. De Renzi, E. Prosopagnosia in two patients with CT scan evidence of damage confined to the right hemisphere. Neuropsychologia. 1986;24(3):385-389.
49. Landis, T, Cummings, JL, Christen, L, Bogen, JE, Imhof, HG. Are unilateral right posterior cerebral lesions sufficient to cause prosopagnosia? Clinical and radiological findings in six additional patients. Cortex. 1986;22(2):243-252.
50. Moscovitch, M, Winocur, G, Behrmann, M. What is special about face recognition? Nineteen experiments on a person with visual object agnosia and dyslexia but normal face recognition. J Cogn Neurosci. 1997;9(5):555-604.
51. Gauthier, I, Tarr, MJ, Anderson, AW, Skudlarski, P, Gore, JC. Activation of the middle fusiform “face area” increases with expertise in recognizing novel objects. Nat Neurosci. 1999;2(6):568-573.
52. Gauthier, I, Skudlarski, P, Gore, JC, Anderson, AW. Expertise for cars and birds recruits brain areas involved in face recognition. Nat Neurosci. 2000;3(2):191-197.
53. George, N, Dolan, RJ, Fink, GR, Baylis, GC, Russel, C, Driver, J. Contrast polarity and face recognition in the human fusiform gyrus. Nat Neuroscience. 1999;2(6):574-580.
54. Kanwisher, N, McDermott, J, Chun, MM. The fusiform face area: a module in human extrastriate cortex specialized for face perception. J Neurosci. 1997;17(11):4302-4311. Available at: http://www.jneurosci.org/content/17/11/4302.long.
55. McCarthy, G, Puce, A, Gore, JC, Allison, T. Face-specific processing in the human fusiform gyrus. J Cogn Neurosci. 1997;9(5):605-610.
56. Sperling, R, Chua, E, Cocchiarella, A, Rand-Giovannetti, E, Poldrack, R, Schacter, DL, et al. Putting names to faces: successful encoding of associative memories activates the anterior hippocampal formation. Neuroimage. 2003;20(2):1400-1410. Available at: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3230827//.
57. Bujarski, K, Sperling, MR. Post-ictal hyperfamiliarity syndrome in focal epilepsy. Epilepsy Behav. 2008;13(3):567-569. Epub ahead of print Jul 29.
58. Michelucci, R, Riguzzi, P, Rubboli, G, Volpi, L, Pasini, E, Santoro, F, Meletti, S, et al. Postictal hyperfamiliarity for unknown faces. Epilepsy Behav. 2010;19(3):518-521. Epub ahead of print Sep 15.

Keywords

Type Description Title
WORD
Supplementary materials

Chia supplementary material
Chia supplementary material 1

 Word (22 KB)
22 KB

Hyperfamiliarity in Amnestic and Vascular Mild Cognitive Impairment

  • Pei Shi Chia (a1) (a2), Shahul Hameed (a1) (a2) (a3), Kok Pin Yong (a1) (a2), Ling Ling Chan (a4) (a3) and Simon Kang Seng Ting (a1) (a2) (a3)...

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed