Skip to main content Accessibility help
×
Home

Graded Aerobic Treadmill Testing in Adolescent Traumatic Brain Injury Patients

  • Dean M. Cordingley (a1) (a2) (a3), Richard Girardin (a1) (a2) (a3), Marc P. Morissette (a1) (a2) (a3), Karen Reimer (a1) (a4) (a3), Jeff Leiter (a1) (a2) (a5) (a3), Kelly Russell (a6) (a7) (a3) and Michael J. Ellis (a1) (a5) (a6) (a8) (a7) (a3)...

Abstract

Purpose: To examine the safety and tolerability of clinical graded aerobic treadmill testing in recovering adolescent moderate and severe traumatic brain injury (TBI) patients referred to a multidisciplinary pediatric concussion program. Methods: We completed a retrospective case series of two moderate and five severe TBI patients (mean age, 17.3 years) who underwent initial Buffalo Concussion Treadmill Testing at a mean time of 71.6 days (range, 55-87) postinjury. Results: Six patients completed one graded aerobic treadmill test each and one patient underwent initial and repeat testing. There were no complications. Five initial treadmill tests were completely tolerated and allowed an accurate assessment of exercise tolerance. Two initial tests were terminated early by the treatment team because of neurological and cardiorespiratory limitations. As a result of testing, two patients were cleared for aerobic exercise as tolerated and four patients were treated with individually tailored submaximal aerobic exercise programs resulting in subjective improvement in residual symptoms and/or exercise tolerance. Repeat treadmill testing in one patient performed after 1 month of treatment with submaximal aerobic exercise prescription was suggestive of improved exercise tolerance. One patient was able to tolerate aerobic exercise following surgery for posterior glottic stenosis. Conclusions: Preliminary results suggest that graded aerobic treadmill testing is a safe, well tolerated, and clinically useful tool to assess exercise tolerance in appropriately selected adolescent patients with TBI. Future prospective studies are needed to evaluate the effect of tailored submaximal aerobic exercise prescription on exercise tolerance and patient outcomes in recovering adolescent moderate and severe TBI patients.

Administrer à des adolescents victimes de lésions cérébrales traumatiques des épreuves graduelles d’effort sur tapis roulant. Objectif: Se pencher sur l’innocuité et sur la tolérance à des épreuves cliniques d’effort sur tapis roulant administrées, de façon graduelle, à des adolescents victimes de lésions cérébrales traumatiques (LCT) modérées et sévères qu’on a adressés, lors de leur période de convalescence, à un programme pédiatrique multidisciplinaire de prise en charge des commotions cérébrales. Méthodes: Nous avons mené une étude de série de cas rétrospective portant sur deux patients victimes de LCT modérées et sur sept patients victimes de LCT sévères (âge moyen : 17,3 ans) à qui l’on avait administré, en moyenne 71,6 jours (intervalle : 55-87) après leur accident, l’épreuve sur tapis roulant de Buffalo pour détecter des commotion cérébrales Résultats: Six patients ont complété chacun une épreuve graduelle d’effort sur tapis roulant ; un autre l’a effectué à deux reprises. Aucune complication n’est apparue. De ces six patients, cinq ont effectué l’épreuve en la tolérant complètement, ce qui a permis une évaluation précise. Fait à noter, deux patients qui en étaient à leur première épreuve ont dû la conclure de façon anticipée en raison de limitations neurologiques et cardio-respiratoires. À la suite de ces épreuves, deux patients ont obtenu l’autorisation d’effectuer des exercices d’aérobie, ces derniers étant désormais tolérés. Quatre patients ont été traités au moyen de programmes personnalisés d’exercices sous-maximaux, ce qui a entraîné une amélioration subjective de leurs symptômes résiduels et/ou de leur résistance à l’effort. Il est aussi apparu que le patient à qui l’on avait administré l’épreuve un mois après avoir subi des traitements, le limitant à des exercices d’aérobie sous-maximaux, donnait à voir une résistance à l’effort améliorée. Enfin, un patient a été en mesure d’endurer des exercices d’aérobie à la suite d’une chirurgie visant à traiter une sténose de la partie postérieure de la glotte. Conclusions: Des résultats préliminaires suggèrent que l’épreuve graduelle d’effort sur tapis roulant est un outil clinique sans risques, bien toléré et utile pour évaluer la résistance à l’effort dans le cas de patients adolescents victimes d’une LCT qui avaient été soigneusement sélectionnés. Des études prospectives ultérieures sont nécessaires pour évaluer les effets des programmes personnalisés d’exercices sous-maximaux quant à la résistance à l’effort et à l’évolution de l’état de santé de patients adolescents en convalescence après avoir été victimes de LCT modérées et sévères.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Graded Aerobic Treadmill Testing in Adolescent Traumatic Brain Injury Patients
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Graded Aerobic Treadmill Testing in Adolescent Traumatic Brain Injury Patients
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Graded Aerobic Treadmill Testing in Adolescent Traumatic Brain Injury Patients
      Available formats
      ×

Copyright

Corresponding author

Correspondence to: Michael Ellis, Pan Am Clinic Foundation, 75 Poseidon Bay, Winnipeg, MB, Canada R3M 3E4. Email: mellis3@panamclinic.com

References

Hide All
1. Thurman, DJ. The epidemiology of traumatic brain injury in children and youths: a review of research since 1990. J Child Neurol. 2016;31:20-27.
2. Cusimano, MD, Cho, N, Amin, K, et al. Mechanisms of team-sport-related brain injuries in children 5 to 19 years old: opportunities for prevention. PLoS One. 2013;8:e58868.
3. Meehan, WP 3rd, Mannix, R. Pediatric concussions in United States emergency departments in the years 2002 to 2006. J Pediatr. 2010;157:889-893.
4. Zemek, R, Barrowman, N, Freedman, SB, et al. Clinical risk score for persistent postconcussion symptoms among children with acute concussion in the ED. JAMA. 2016;315:1014-1025.
5. Dewan, MC, Mummareddy, N, Wellons, JC 3rd, Bonfield, CM. The epidemiology of global pediatric traumatic brain injury: a qualitative review. World Neurosurg. 2016;91:497-509.
6. Kochanek, PM, Carney, N, Adelson, PD, et al. Guidelines for the acute medical management of severe traumatic brain injury in infants, children, and adolescents--second edition. Pediatr Crit Care Med. 2012;13(Suppl 1):S1-S82.
7. Scaife, ER, Statler, KD. Traumatic brain injury: preferred methods and targets for resuscitation. Curr Opin Pediatr. 2010;22:339-345.
8. Anderson, V, Godfrey, C, Rosenfeld, JV, Catroppa, C. Predictors of cognitive function and recovery 10 years after traumatic brain injury in young children. Pediatrics. 2012;129:e254-e261.
9. Anderson, VA, Morse, SA, Catroppa, C, Haritou, F, Rosenfeld, JV. Thirty month outcome from early childhood head injury: a prospective analysis of neurobehavioural recovery. Brain. 2004;127:2608-2620.
10. Babikian, T, Asarnow, R. Neurocognitive outcomes and recovery after pediatric TBI: meta-analytic review of the literature. Neuropsychology. 2009;23:283-296.
11. Kuhtz-Buschbeck, JP, Hoppe, B, Golge, M, Dreesmann, M, Damm-Stunitz, U, Ritz, A. Sensorimotor recovery in children after traumatic brain injury: analyses of gait, gross motor, and fine motor skills. Dev Med Child Neurol. 2003;45:821-828.
12. Walker, WC, Pickett, TC. Motor impairment after severe traumatic brain injury: a longitudinal multicenter study. J Rehabil Res Dev. 2007;44:975-982.
13. Bateman, A, Culpan, FJ, Pickering, AD, Powell, JH, Scott, OM, Greenwood, RJ. The effect of aerobic training on rehabilitation outcomes after recent severe brain injury: a randomized controlled evaluation. Arch Phys Med Rehabil. 2001;82:174-182.
14. Mossberg, KA, Amonette, WE, Masel, BE. Endurance training and cardiorespiratory conditioning after traumatic brain injury. J Head Trauma Rehabil. 2010;25:173-183.
15. Bhambhani, Y, Rowland, G, Farag, M. Reliability of peak cardiorespiratory responses in patients with moderate to severe traumatic brain injury. Arch Phys Med Rehabil. 2003;84:1629-1636.
16. Hunter, M, Tomberlin, J, Kirkikis, C, Kuna, ST. Progressive exercise testing in closed head-injured subjects: comparison of exercise apparatus in assessment of a physical conditioning program. Phys Ther. 1990;70:363-371.
17. Jankowski, LW, Sullivan, SJ. Aerobic and neuromuscular training: effect on the capacity, efficiency, and fatigability of patients with traumatic brain injuries. Arch Phys Med Rehabil. 1990;71:500-504.
18. Amonette, WE, Mossberg, KA. Ventilatory anaerobic thresholds of individuals recovering from traumatic brain injury compared with noninjured controls. J Head Trauma Rehabil. 2013;28:E13-E20.
19. Mossberg, KA, Ayala, D, Baker, T, Heard, J, Masel, B. Aerobic capacity after traumatic brain injury: comparison with a nondisabled cohort. Arch Phys Med Rehabil. 2007;88:315-320.
20. Mossberg, KA, Orlander, EE, Norcross, JL. Cardiorespiratory capacity after weight-supported treadmill training in patients with traumatic brain injury. Phys Ther. 2008;88:77-87.
21. Cordingley, D, Girardin, R, Reimer, K, et al. Graded aerobic treadmill testing in pediatric sports-related concussion: safety, clinical use, and patient outcomes. J Neurosurg Pediatr. 2016;25:693-702.
22. Darling, SR, Leddy, JJ, Baker, JG, et al. Evaluation of the Zurich Guidelines and exercise testing for return to play in adolescents following concussion. Clin J Sport Med. 2014;24:128-133.
23. Ellis, MJ, Leddy, JJ, Willer, B. Physiological, vestibulo-ocular and cervicogenic post-concussion disorders: an evidence-based classification system with directions for treatment. Brain Inj. 2014;29:1-11.
24. Kozlowski, KF, Graham, J, Leddy, JJ, Devinney-Boymel, L, Willer, BS. Exercise intolerance in individuals with postconcussion syndrome. J Athl Train. 2013;48:627-635.
25. Leddy, J, Hinds, A, Sirica, D, Willer, B. The role of controlled exercise in concussion management. PM R. 2016;8:S91-S100.
26. Leddy, JJ, Baker, JG, Kozlowski, K, Bisson, L, Willer, B. Reliability of a graded exercise test for assessing recovery from concussion. Clin J Sport Med. 2011;21:89-94.
27. Leddy, JJ, Baker, JG, Merchant, A, et al. Brain or strain? Symptoms alone do not distinguish physiologic concussion from cervical/vestibular injury. Clin J Sport Med. 2015;25:237-242.
28. Leddy, JJ, Kozlowski, K, Donnelly, JP, Pendergast, DR, Epstein, LH, Willer, B. A preliminary study of subsymptom threshold exercise training for refractory post-concussion syndrome. Clin J Sport Med. 2010;20:21-27.
29. Leddy, JJ, Willer, B. Use of graded exercise testing in concussion and return-to-activity management. Curr Sports Med Re. p2013;12:370-376.
30. Malec, JF, Brown, AW, Leibson, CL, et al. The mayo classification system for traumatic brain injury severity. J Neurotrauma. 2007;24:1417-1424.
31. Jamnik, VK, Warburton, DE, Makarski, J, et al. Enhancing the effectiveness of clearance for physical activity participation: background and overall process. Appl Physiol Nutr Metab. 2011;36(Suppl 1):S3-S13.
32. Mossberg, KA, Greene, BP. Reliability of graded exercise testing after traumatic brain injury: submaximal and peak responses. Am J Phys Med Rehabil. 2005;84:492-500.
33. Borg, G. Perceived exertion as an indicator of somatic stress. Scand J Rehabil Med. 1970;2:92-98.
34. Ellis, MJ, Leddy, J, Willer, B. Multi-disciplinary management of athletes with post-concussion syndrome: an evolving pathophysiological approach. Front Neurol. 2016;7:136.
35. American College of Sports Medicine. ACSM’s guidelines for exercise testing and prescription, 8th ed. Philadelphia: Wolters Kluwer; 2010.
36. Mossberg, KA. Reliability of a timed walk test in persons with acquired brain injury. Am J Phys Med Rehabil. 2003;82:385-392.
37. Mossberg, KA, Fortini, E. Responsiveness and validity of the six-minute walk test in individuals with traumatic brain injury. Phys Ther. 2012;92:726-733.
38. Vitale, AE, Jankowski, LW, Sullivan, SJ. Reliability for a walk/run test to estimate aerobic capacity in a brain-injured population. Brain Inj. 1997;11:67-76.
39. Alali, AS, Scales, DC, Fowler, RA, et al. Tracheostomy timing in traumatic brain injury: a propensity-matched cohort study. J Trauma Acute Care Surg. 2014;76:70-78.
40. Cifu, DX, Kaelin, DL, Wall, BE. Deep venous thrombosis: incidence on admission to a brain injury rehabilitation program. Arch Phys Med Rehabil. 1996;77:1182-1185.
41. Kitagawa, RS, Van Haren, RM, Yokobori, S, et al. Management of simultaneous traumatic brain injury and aortic injury. J Neurosurg. 2013;119:324-331.
42. LeRoux, P. Haemoglobin management in acute brain injury. Curr Opin Crit Care. 2013;19:83-91.
43. Ravindra, VM, Riva-Cambrin, J, Sivakumar, W, Metzger, RR, Bollo, RJ. Risk factors for traumatic blunt cerebrovascular injury diagnosed by computed tomography angiography in the pediatric population: a retrospective cohort study. J Neurosurg Pediatr. 2015;15:599-606.
44. Grassi, GP, Turci, M, Sforza, C. Aerobic fitness and somatic growth in adolescents: a cross sectional investigation in a high school context. J Sports Med Phys Fitness. 2006;46:412-418.
45. Archer, T. Influence of physical exercise on traumatic brain injury deficits: scaffolding effect. Neurotox Res. 2012;21:418-434.
46. Archer, T, Svensson, K, Alricsson, M. Physical exercise ameliorates deficits induced by traumatic brain injury. Acta Neurol Scand. 2012;125:293-302.
47. Griesbach, GS. Exercise after traumatic brain injury: is it a double-edged sword? PM R. 2011;3:S64-S72.
48. Baker, JG, Freitas, MS, Leddy, JJ, Kozlowski, KF, Willer, BS. Return to full functioning after graded exercise assessment and progressive exercise treatment of postconcussion syndrome. Rehabil Res Pract. 2012; 2012:705309.
49. Clausen, M, Pendergast, DR, Willer, B, Leddy, J. Cerebral blood flow during treadmill exercise is a marker of physiological postconcussion syndrome in female athletes. J Head Trauma Rehabil. 2016;31:215-224.
50. Mutch, WA, Ellis, MJ, Ryner, LN, et al. Longitudinal brain magnetic resonance imaging CO2 stress testing in individual adolescent sports-related concussion patients: a pilot study. Front Neurol. 2016;7:107.
51. Chin, LM, Chan, L, Woolstenhulme, JG, Christensen, EJ, Shenouda, CN, Keyser, RE. Improved cardiorespiratory fitness with aerobic exercise training in individuals with traumatic brain injury. J Head Trauma Rehabil. 2015;30:382-390.
52. Mossberg, KA, Masel, BE, Gilkison, CR, Urban, RJ. Aerobic capacity and growth hormone deficiency after traumatic brain injury. J Clin Endocrinol Metab. 2008;93:2581-2587.

Keywords

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed