Hostname: page-component-848d4c4894-wzw2p Total loading time: 0 Render date: 2024-05-27T07:44:46.894Z Has data issue: false hasContentIssue false

Environment, Genetics and Idiopathic Parkinson's Disease

Published online by Cambridge University Press:  18 September 2015

Judes Poirier*
Affiliation:
McGill Centre For Studies in Aging, Montreal The Douglas Hospital Research Centre, Verdun
Sandra Kogan
Affiliation:
McGill Centre For Studies in Aging, Montreal
Serge Gauthier
Affiliation:
McGill Centre For Studies in Aging, Montreal
*
The McGill Centre For Studies in Aging, Montreal General Hospital, 1650 Cedar Ave., Montréal, Québec, Canada H3G 1A4
Rights & Permissions [Opens in a new window]

Abstract:

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Since Idiopathic Parkinson's disease (IPD) was first described more than 170 years ago, there have been major advances in the understanding of the etiology of the disease as well as in its treatment. This article will review current knowledge concerning the role of the environment, genetic hypotheses and the aging factor in the etiology of IPD and proposes a complex interaction involving all these factors. Hypotheses regarding mitochondrial inhibition and free radical generation in IPD are discussed in relation to the mechanism of action of neurotoxins known to produce parkinsonian syndromes.

Type
Focus on Parkinson's Disease
Copyright
Copyright © Canadian Neurological Sciences Federation 1991

References

1.Homykiewicz, O.The neurochemical basis of the pharmacology of Parkinson’s disease In: Calne, D.B. ed. Handbook of Experimental Pharmacology New York, 1989: Spring-Verlag 88; 185-204.CrossRefGoogle Scholar
2.DeJong, JD, Burns, BD.Parkinson’s disease: A random process. Can Med Assoc J 1967; 97: 4956.Google Scholar
3.Calne, DB.Langston, JW.Etiology of Parkinson’s disease. Lancet 1983; 2: 14571459.CrossRefGoogle Scholar
4.Appel, SH.A unifying hypothesis for the cause of amyotrophic lateral sclerosis, Parkinsonism, and Alzheimer disease. Ann Neurol 1981; 10: 499505.CrossRefGoogle ScholarPubMed
5.Robbins, JH, Otsuka, F, Tarone, RE, et al. Parkinson’s disease and Alzheimer’s disease: Hypersensitivity to X-rays in cultures cell lines. Can Med Assoc J 1986; 134: 597607.Google Scholar
6.Barbeau, A, Pourcher, E.New data on the genetics of Parkinson’s disease. Can J Neurol Sci 1982; 9: 5360.CrossRefGoogle ScholarPubMed
7.Golbe, LI, Di lorio, G, Bonavita, V, et al. A large kindred with autosomal dominant Parkinson’s disease. Ann Neurol 1990; 27: 276282.CrossRefGoogle ScholarPubMed
8.Marttila, RJ, Arstila, P, Nikoskelainen, J, et al. Viral antibodies in the sera from patients with Parkinson’s disease. Eur Neurol 1977; 15: 2533.CrossRefGoogle Scholar
9.Elizan, TS, Casals, J.The viral hypothesis in Parkinsonism. J Neurol TransmSuppl 1983; 19: 7588.Google ScholarPubMed
10.Langston, JW, Ballard, PA, Tetrud, JW, et al. Chronic parkinsonism in humans due to a product of meperidine-analog synthesis. Science 1983; 219: 979980.CrossRefGoogle ScholarPubMed
11.Barbeau, A.Manganese and extrapyramidal disorder. Neurotoxicology 1983; 5: 1336.Google Scholar
12.Richter, R.Degeneration of the basal ganglia in monkeys from chronic carbon disulfide poisoning. J Neuropathol Exp Neurol 1945; 4: 324353.CrossRefGoogle ScholarPubMed
13.Tanner, CM, Chen, C, Wang, W, et al. Environmental factors and Parkinson’s disease: a case-control study in China. Neurology 1989; 39: 660664.CrossRefGoogle ScholarPubMed
14.Schoenberg, BS, Anderson, DW, Hacrer, AF.Prevalence of Parkinson’s disease in the biracial population of Copiah Country, Mississippi. Neurology 1985; 35: 841845.CrossRefGoogle Scholar
15.Schoenberg, BS, Osuntokin, BO, Adeuja, AOGet al. A prevalence survey of Parkinson’s disease in black populations in the rural United States and in rural Nigeria: door-to-door community studies. Neurology 1988; 39: 645646.CrossRefGoogle Scholar
16.Mutch, WJ, Dingwall-Fordyce, I, Downie, AW, et al. Parkinson’s disease in a Scottish city. Br Med J 1986; 292: 534536.CrossRefGoogle Scholar
17.Dupont, E.Epidemiology of parkinsonism. The Parkinson investigation. In: Worm-Peterson, J, Bottcher, J eds. Symposium on parkinsonism Merck Sharp and Dohme, Denmark, 1977.Google Scholar
18.Rosati, G, Granieri, E, Pinna, L, et al. The risk of Parkinson’s disease in Mediterranean people. Neurology 1980; 30: 250255.CrossRefGoogle ScholarPubMed
19.Pollock, M, Hornabrook, RW.The prevalence, natural history and dementia of Parkinson’s disease. Brain 1966; 89: 429448.CrossRefGoogle ScholarPubMed
20.Gudmundsson, KRA.A clinical survey of parkinsonism in Iceland. Acta Neurol Scand 1967; 43 (Suppl33): 961.CrossRefGoogle ScholarPubMed
21.Jenkins, AC.Epidemiology of parkinsonism in Victoria. Med J Aust 1966; 2 496502.Google ScholarPubMed
22.Broman, T.Parkinson’s syndrome, prevalence and incidence in Goteborg. Acta Neurol Scand 1963; 39 (Suppl4): 95101.CrossRefGoogle Scholar
23.Riederer, P, Wuketich, ST.Time course of nigrostriatal degeneration in Parkinson’s disease. J Neural Transm 1976; 38: 277301.CrossRefGoogle ScholarPubMed
24.Mann, DMA, Yates, PO.The effects of ageing on the pigmented nerve cells of the human locus coeruleus and substantia nigra. Acta Neurol Pathol 1979; 47: 9397.Google Scholar
25.Mann, DMA, Yates, PO.Possible role of neuromelanin in the pathogenesis of Parkinson’s disease. Mech Ageing Dev 1983; 39: 545549.Google Scholar
26.Hirsch, E, Graybiel, AM, Agid, YAMelanized dopaminergic neurons are differentially susceptible to degeneration in Parkinson’s disease. Nature 1988; 334: 345348.CrossRefGoogle ScholarPubMed
27.Rojas, G, Asenjo, A, Chiorino, R, et al. Cellular and subcellular structure of the ventrolateral nucleus of the thalamus in Parkinson’s disease: deposits of iron. Confin Neurol 1965; 26: 326342.CrossRefGoogle Scholar
28.Earle, KM.Studies in Parkinson’s disease including X-ray fluorescence spectroscopy of formalin fixed brain tissues. J Neuropathol Exp Neurol 1968; 27: 114.CrossRefGoogle Scholar
29.Dexter, DT, Wells, FR, Lees, A, et al. Increased nigral iron content and alterations in other metal ions occurring in brain in Parkinson’s disease. J Neurochem 1989; 52: 18301836.CrossRefGoogle ScholarPubMed
30.Riederer, P, Sofic, E, Rausch, WD, et al. Transition metals, ferritin, glutathione and ascorbic acid in parkinsonian brains. J Neurochem 1989; 52: 515520.CrossRefGoogle ScholarPubMed
31.Barbeau, A.Parkinson’s disease: etiological considerations. In: Yahr MD, ed. The Basal Ganglia Raven Press, New York 1977: 281292.Google Scholar
32.Barbeau, A.Etiology of Parkinson’s disease: a research strategy. Can J Neurol Sci 1984; 11: 2428.Google ScholarPubMed
33.Poirier, J, Dallaire, L, Barbeau, A, Parkinson’s disease and free radicals. In: Rice-Evans, C, ed. Free Radicals, Cell Damage and Disease Richelieu Press 1986; 273293.Google Scholar
34.Jellinger, K.Pathology of Parkinson’s disease. In: Calne, DB ed. Handbook of Experimental Pharmacology, New York, 1989: Spring-Verlag 68; 47112.Google Scholar
35.Agid, Y, Javoy-Agid, F, Ruberg, M.Biochemistry of neurotransmitters in Parkinson’s disease. In: Marsden, CD, Fahn, S, eds. Movement Disorders. Degeneration of Dopaminergic Neurons, Butterworths 1987: 167230.Google Scholar
36.Ota, Y, Miyosji, S, Ueda, O, et al. A familial paralysis agitans. A clinical anatomical genetic study. Folia Psychiatry Neurol Jpn 1958; 12: 112121.Google ScholarPubMed
37.Marttila, RJ, Kaprio, J, Koskenvuo, M, et al. Parkinson’s disease in a nationwide twin cohort. Neurology 1988; 38: 12171219.CrossRefGoogle Scholar
38.Johnson, WG, Hodge, SE, Duvoisin, RC.Twin studies and the genetics of Parkinson’s disease - a reappraisal. Movement Dis 1990; 5: 187194.CrossRefGoogle ScholarPubMed
39.Ward, CD, Duvoisin, RC, Ince, SE, et al. Parkinson’s disease in 65 pairs of twins and in a set of quadruplets. Neurology 1983; 33: 815824.CrossRefGoogle Scholar
40.Steventon, GB, Heafield, MTE, Waring, RH, et al. Xenobiotic metabolism in Parkinson’s disease. Neurology 1989; 39: 883887.CrossRefGoogle ScholarPubMed
41.Barbeau, A, Cloutier, T, Roy, M, et al. Ecogenetics of Parkinson’s disease: 4-hydroxylation of debrisoquine. Lancet 1985; 2: 12131216.CrossRefGoogle ScholarPubMed
42.Guengerich, FP, Liebler, DC.Enzymatic activation of chemicals to toxic metabolites. CRC Critical Review in Toxicology 1985; 14: 259307.CrossRefGoogle ScholarPubMed
43.Duvoisin, RC.The cause of Parkinson’s disease. In: Marsden, CD. and Fahn, S. eds. Movement disorders Butterworth, London 1981: 824.CrossRefGoogle Scholar
44.Gibbs, CJ, Gajdusek, DC.An update on long term in vivo and in vitro studies designed to identify a virus as the cause of amyotrophic lateral sclerosis and Parkinson’s disease. Adv Neurol 1982; 36: 141.Google ScholarPubMed
45.Ambani, LM, Van Woert, MH, Murphy, S.Brain peroxidase and catalase in Parkinson’s disease. Arch Neurol 1975; 32: 114118.CrossRefGoogle Scholar
46.Perry, TL, Yong, VW.Idiopathic Parkinson’s disease, progressive supranuclear palsy and glutathione metabolism in the substantia nigra of patients. Neurosci Lett 1986; 67: 269274.CrossRefGoogle ScholarPubMed
47.Kish, SJ, Morito, C, Hornykiewicz, O.Glutathione peroxidase activity in Parkinson’s disease brain. Neurosci Lett 1985; 58: 343346.Google ScholarPubMed
48.Perry, TL, Godin, DV, Hansen, S.Parkinson’s disease: a disorder due to nigral glutathione deficiency?. Neurosci Lett 1982; 33: 305310.CrossRefGoogle ScholarPubMed
49.Marttila, RJ, Lorentz, H, Rinne, UK.Oxygen toxicity protecting enzymes in Parkinson’s disease. J Neurol Sci 1988; 86: 321331.CrossRefGoogle ScholarPubMed
50.Kilinc, A, Yalcin, AS, Yalcin, D, et al. Increased erythrocyte susceptibility to lipid peroxidation in human Parkinson’s disease. Neurosci Lett 1988; 87: 307310.CrossRefGoogle ScholarPubMed
51.Poirier, J, Barbeau, A.Erythrocyte antioxidant activity in human patients with Parkinson’s disease. Neurosci Lett 1987; 75: 345348.CrossRefGoogle ScholarPubMed
52.Poirier, J, Donaldson, J, Barbeau, A.The specific vulnerability of thesubstantia nigra to MPTP is related to the presence of transition metals. Biochem Biophys Comm 1985; 128: 2533.CrossRefGoogle Scholar
53.Poirier, J, Barbeau, A.A catalyst function for MPTP in superoxide formation. Biochem Biophys Res Comm 1985; 131: 12841289.CrossRefGoogle ScholarPubMed
54.Donaldson, J, La Bella, FS, Gesser, D.Enhanced autooxidation of dopamine as possible basis of manganese neurotoxicity. Neurotoxicology 1981; 2: 5364.Google Scholar
55.Heikkila, RE, Cohen, G.Inhibition of amine uptake by hydrogen peroxide: A mechanism for the toxic effects of 6-hydroxy-dopamine. Science 1971; 172: 12571258.CrossRefGoogle Scholar
56.Fahn, S.The endogenous toxin hypothesis of the etiology of Parkinson’s disease and a pilot trial of high dosage antioxidants in an attempt to slow the progression of the illness. Ann NY Acad Sci 1989; 570: 186196.CrossRefGoogle Scholar
57.Tetrud, JW, Langston, JW.The effect of Deprenyl (Selegiline) on thenatural history of Parkinson’s disease. Science 1989; 245: 519522.CrossRefGoogle Scholar
58.Parkinson Study Group. Effect of deprenyl on the progression of disability in early Parkinson’s disease. New Engl J Med 1989; 321: 13641371.CrossRefGoogle Scholar
59.Stitzel, RE.The biological fate of reserpine. Pharmac Rev 1976; 28: 179206.Google ScholarPubMed
60.Couper, J.On the effects of black oxide of manganese when inhaled into the lungs. Br Ann Med Pharmac 1837; 1: 4142.Google Scholar
61.Cotzias, GC.Manganese in health and disease. Physiol Rev 1958; 38: 503532.CrossRefGoogle ScholarPubMed
62.Cotzias, GC.Manganese, melanins and the extrapyramidal system. J Neurosurg 1966; 24: 170180.Google ScholarPubMed
63.Canavan, MM, Drinker, CK.Chronic manganese poisoning. Report of a case with autopsy. Arch Neurol Psychiatr 1934; 32: 501513.CrossRefGoogle Scholar
64.Tranzer, JP, Thoenen, H.An electron microscopic study of selective acute degeneration of sympathetic nerve terminals after administration of 6-hydroxydopamine. Experientia 1968; 24: 155156.CrossRefGoogle ScholarPubMed
65.Ungerstedt, U.6-hydroxydopamine induced degeneration of central monoamine neurons. Eur J Pharmacol 1968; 5: 107110.CrossRefGoogle Scholar
66.Kraemer, G, Breese, G, Prange, A, et al. Use of 6-hydroxydopamine to deplete brain catecholamines in the rhesus monkey: Effects on urinary metabolites and behaviour. Psychopharmacology 1981; 73: 111.CrossRefGoogle Scholar
67.Graham, DG, Tiffani, SM, Bell, WR, et al. Autooxidation versus covalent binding of quinones as the mechanism of toxicity of dopamine, 6-hydroxydopamine, and related compounds towards C1300 neuroblastoma cells in vitro. Mol Pharmacol 1978; 14: 644653.Google Scholar
68.Burns, RS, Chiueh, C, Markey, SP, et al. A primate model of parkinsonism: Selective destruction of dopaminergic neurons in the pars compacta of the substantia nigra by MPTP. Proc Natl Acad Sci 1983; 80: 45464550.CrossRefGoogle Scholar
69.Heikkila, RE, Hess, A, Duvoisin, RC.Dopaminergic neurotoxicity of l-methyl-4-phenyl-l,2,3,6-tetrahydropyridine (MPTP) in the mouse: Relationships between monoamine oxidase, MPTP metabolism and neurotoxicity. Life Sci 1985; 36: 231236.CrossRefGoogle Scholar
70.Perry, TL, Yong, VW, Clavier, RM, et al. Partial protection from dopaminergic neurotoxin l-methyl-4-phenyl-l,2,3,6-tetrahydropyridine by four different antioxyidants in the mouse. Neurosci 1985; 60: 109114.Google Scholar
71.Ferraro, TN, Golden, GT, DeMattei, M, et al. Effect of MPTP on levels of glutathione in extrapyramidal system in mouse. Neuropharmacol 1986; 25: 10711074.CrossRefGoogle Scholar
72.Sershen, H, Reith, MEA, Hashim, H, et al. Protection against MPTP neurotoxicity by the antioxidant ascorbic acid. Neuropharmacol 1985; 24: 12571259.CrossRefGoogle ScholarPubMed
73.Di Monte, D, Jewell, SA, Ekstrom, G, et al. l-methyl-4-phenyl- 1,2,3,6-tetrahydropyridine (MPTP) and l-methyl-4-phenyl pyridinium (MPP+) cause a rapid ATP depletion in isolated hepatocytes. Biochem Biophys Res Commun 1986; 137: 310315.CrossRefGoogle Scholar
74.Smith, MT, Sandy, MS.DiMonte, D.Free radical, lipid peroxidation and Parkinson’s disease. Lancet 1987; 1: 38.CrossRefGoogle ScholarPubMed
75.Perry, TL, Yong, VW, Jones, K, et al. Manipulation of glutathione content fails to alter dopaminergic nigrostriatal neurotoxicity of N-methyl-4-phenyl-l,2,3,6-tetrahydropyridine. Neurosci Lett 1986; 70: 261265.CrossRefGoogle Scholar
76.Ramsay, RR, Salach, JI, Singer, TP.Uptake of l-methyl-4-phenyl pyridine (MPP+) by mitochondria and its relation to the inhibition of NAD-linked substrates by MPP+. Biochem Biophys Res Commun 1986; 134: 743748.CrossRefGoogle Scholar
77.Poirier, J, Barbeau, A.l-methyl-4-phenyl pyridinium-induced inhibition of NADH cytochrome c reductase. Neurosci 1985; 62: 715.Google Scholar
78.Nicklaus, WJ, Vyas, I, Heikilla, RE.Inhibition of NADH-linked oxidation in brain mitochondria by l-methyl-4-phenylpyridine, a metabolite of the neurotoxin, MPTP. Life Sci 1985; 36: 25032508.CrossRefGoogle Scholar
79.Mizuno, Y, Saitoh, T, Sone, N.Inhibition of mitochondrial NADHubiquinone oxidoreductase activity by l-methyl-4-phenyl pyridinium. Biochem Biophys Res Comm 1987; 143: 294299.CrossRefGoogle Scholar
80.Kass, GEN, Wright, JM, Nicoreta, P, et al. The mechanism of MPTP toxicity: Role of intracellular calcium. Arch Biochem Biophys 1988; 260: 789797.CrossRefGoogle ScholarPubMed
81.Schapira, AHV, Cooper, JM, Dexter, D, et al. Mitochondrial complex I deficiency in Parkinson’s disease. Lancet 1989; 1: 1269.CrossRefGoogle ScholarPubMed
82.Bindoff, LA, Birch-Machin, M, Cartlidge, NEF, et al. Mitochondrial function in Parkinson’s disease. Lancet 1989; 2: 49.CrossRefGoogle ScholarPubMed
83.Mizuno, Y, Ohta, S, Tanaka, M, et al. Deficiencies in complex I subunits of the respiratory chain in Parkinson’s diseases. Biochem Biophys Res Comm 1989; 163: 14501455.CrossRefGoogle Scholar
84.Schapira, AHV, Cooper, JM, Dexter, D, et al. Mitochondrial complex I deficiency in Parkinson’s diseases. J Neurochem 1990; 54: 823827.CrossRefGoogle Scholar
85.Hallgren, B, Sourander, P.The effect of age on non-heamin iron in the human brain. J Neurochem 1958; 3: 4151.CrossRefGoogle ScholarPubMed
86.Dexter, DT, Carter, CJWells, FR, et al. Basal lipid peroxidation in substantia nigra is increased in Parkinson’s disease. J Neurochem 1989; 52: 381389.CrossRefGoogle ScholarPubMed
87.Jenner, P., Clues to the mechanism underlying dopamine cell death in Parkinson’s disease. J Neurol Neurosurg Psych 1989; Suppl1: 2228.CrossRefGoogle Scholar
88.Poirier, J, Dea, D, Baccichet, A.Brain antioxidant status in Parkinson Disease: Gene expression and enzymatic activity.(submitted, 1991Google Scholar
89.Marsden CD Parkinson's disease in twins. J Neurol Neurosurg Psych 1987; 50: 105106.CrossRefGoogle Scholar