Hostname: page-component-8448b6f56d-jr42d Total loading time: 0 Render date: 2024-04-17T02:15:37.657Z Has data issue: false hasContentIssue false

Conservative Management of Pituitary Macroadenoma Contacting the Optic Apparatus

Published online by Cambridge University Press:  23 September 2016

Won Hyung A. Ryu
Shulich School of Medicine & Dentistry, University of Western Ontario, London
Samantha Tam
Queen's University, School of Medicine, Kingston, Ontario, Canada
Brian Rotenberg
Department of Otolaryngology — Head and Neck Surgery, University of Western Ontario, London
Mohamed Ahmed Labib
Department of Clinical Neurosciences — Division of Neurosurgery, University of Western Ontario, London
Donald Lee
Department of Diagnostic Radiology and Nuclear Medicine, University of Western Ontario, London
David A. Nicolle
Department of Ophthalmology, University of Western Ontario, London
Stan Van Uum
Department of Medicine — Division of Endocrinology and Metabolismy, University of Western Ontario, London
Neil Duggal*
Department of Clinical Neurosciences — Division of Neurosurgery, University of Western Ontario, London
Department of Clinical Neurological Sciences, (Division of Neurosurgery), University of Western Ontario, 339 Windermere Road, London, Ontario, N6A 5A5, Canada
Rights & Permissions [Opens in a new window]


Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

To describe the tumor characteristics and visual function in conservatively managed patients with non-functioning pituitary macroadenoma (NFMA) that contacted/compressed the visual pathway.


Retrospective case-series.


Tertiary-care academic institution.


Six patients with diagnosis of NFMA.

Main Outcome:

Visual function and radiological characteristics of the optic apparatus and pituitary tumor.


All patients had radiological evidence of optic apparatus compression but only one had visual field defect at the initial presentation. While two of the six patients developed visual field changes during follow-up (41±34.8 months), the patient with visual field defect at the time of diagnosis improved to normal vision.


Select NFMAs that contact the optic apparatus, without visual dysfunction, may be managed with close ophthalmological and radiographic monitoring, depending on tumor and imaging characteristics. This may be of particular relevance in patients considered to have a high peri-operative risk, such as advanced age or significant co-morbidities.



Le but de l'étude était de décrire les caractéristiques des tumeurs et la fonction visuelle chez les patients atteints de macro adénomes pituitaires non fonctionnels (MANF) adjacents ou comprimant les voies optiques, traités de façon conservatrice.


Il s'agit d'une étude rétrospective portant sur six patients ayant consulté dans une institution académique de soins tertiaires, chez qui un diagnostic de MANF a été posé. L'issue primaire était la fonction visuelle et les caractéristiques radiologiques de l'appareil optique et de la tumeur pituitaire.


Tous les patients avaient une compression de l'appareil optique à l'imagerie, mais seulement un avait un déficit du champ visuel au moment de la première évaluation. Deux des six patients ont présenté des changements du champ visuel au cours du suivi (41 ± 34,8 mois) ; le patient qui avait un déficit du champ visuel au moment du diagnostic a recouvré une vision normale.


Certains MANF qui touchent à l'appareil optique sans provoquer de dysfonction visuelle peuvent être suivis étroitement en ophtalmologie et en radiologie, selon les caractéristiques de la tumeur et de l'imagerie. Ceci peut être particulièrement pertinent chez les patients considérés à haut risque périopératoire, tels les patients âgés ou qui ont des comorbidités importantes.

Original Articles
Copyright © The Canadian Journal of Neurological 2010


1. Daly, AF, Rixhon, M, Adam, C, Dempegioti, A, Tichomirowa, MA, Beckers, A. High prevalence of pituitary adenomas: a cross-sectional study in the province of Liege, Belgium. J Clin Endocrinol Metab. 2006;91(12):4769–75.10.1210/jc.2006-166816968795Google Scholar
2. Surawicz, TS, McCarthy, BJ, Kupelian, V, Jukich, PJ, Bruner, JM, Davis, FG. Descriptive epidemiology of primary brain and CNS tumors: results from the Central Brain Tumor Registry of the United States, 1990–1994. Neurooncol. 1999;1(1):1425.Google Scholar
3. Karavitaki, N, Collison, K, Halliday, J, et al. What is the natural history of nonoperated nonfunctioning pituitary adenomas? Clin Endocrinol (Oxf). 2007;67(6):938–43.10.1111/j.1365-2265.2007.02990.x17692109Google Scholar
4. Dekkers, OM, Hammer, S, de Keizer, RJ, et al. The natural course of non-functioning pituitary macroadenomas. Eur J Endocrinol. 2007;156(2):217–24.10.1530/eje.1.0233417287411Google Scholar
5. Dekkers, OM, Pereira, AM, Romijn, JA. Treatment and follow-up of clinically nonfunctioning pituitary macroadenomas. J Clin Endocrinol Metab. 2008;93(10):3717–26.10.1210/jc.2008-064318682516Google Scholar
6. Ikeda, H, Yoshimoto, T. Visual disturbances in patients with pituitary adenoma. Acta Neurol Scand. 1995;92(2):157–60.7484065Google Scholar
7. Frisen, L, Jensen, C. How robust is the optic chiasm? Perimetric and neuro-imaging correlations. Acta Neurol Scand. 2008;117(3):198204.17868042Google Scholar
8. Fujimoto, N, Saeki, N, Miyauchi, O, Adachi-Usami, E. Criteria for early detection of temporal hemianopia in asymptomatic pituitary tumor. Eye. 2002;16(6):731–8.10.1038/sj.eye.670016512439668Google Scholar
9. Karanjia, N, Jacobson, DM. Compression of the prechiasmatic optic nerve produces a junctional scotoma. Am J Ophthalmol. 1999; 128(2):256–8.10.1016/S0002-9394(99)00084-710458197Google Scholar
10. Huang, WC, Lee, LS. Visual field defects in patients with pituitary adenomas. Chung Hua I Hsueh Tsa Chih (Taipei). 1997;60(5):245–51.Google Scholar
11. Carrim, ZI, Reeks, GA, Chohan, AW, Dunn, LT, Hadley, DM. Predicting impairment of central vision from dimensions of the optic chiasm in patients with pituitary adenoma. Acta Neurochir (Wien). 2007;149(3):255–60.10.1007/s00701-006-1108-717273885Google Scholar
12. Eda, M, Saeki, N, Fujimoto, M, Sunami, K. Demonstration of the optic pathway in large pituitary adenoma on heavily T2 weighted MR image. Brit J Neurosurg. 2002;16(1): 21–9.10.1080/02688690120114192Google Scholar
13. Reincke, M, Allolio, B, Saeger, W, Menzel, J, Winkelmann, W. The ‘incidentaloma’ of the pituitary gland. Is neurosurgery required? JAMA. 1990;263(20):2772–6.10.1001/jama.1990.034402000760262332920Google Scholar
14. Freda, PU, Wardlaw, SL. Clinical review 110: diagnosis and treatment of pituitary tumors. J Clin Endocrinol Metab. 1999;84(11):3859–66.10.1210/jcem.84.11.620210566620Google Scholar
15. Dusick, JR, Esposito, F, Mattozo, CA, Chaloner, C, McArthur, DL, Kelly, DF. Endonasal transsphenoidal surgery: the patient’s perspective-survey results from 259 patients. Surg Neurol. 2006; 65(4):332–41.10.1016/j.surneu.2005.12.01016531188Google Scholar
16. Fatemi, N, Dusick, JR, de Paiva Neto, MA, Kelly, DF. The endonasal microscopic approach for pituitary adenomas and other parasellar tumors: a 10-year experience. Neurosurgery. 2008;63(4 Suppl 2):244–56.AMBIGUOUS 18981830,18797354Google Scholar
17. White, DR, Sonnenburg, RE, Ewend, MG, Senior, BA. Safety of minimally invasive pituitary surgery (MIPS) compared with a traditional approach. Laryngoscope. 2004;114(11):1945–8.10.1097/01.mlg.0000147925.04605.cc15510019Google Scholar