Skip to main content Accessibility help
×
Home

Minorations de Combinaisons Linéaires de Logarithmes de Nombres Algébriques

  • Michel Waldschmidt (a1)

Resume

On sait que la méthode classique de Schneider (en une variable) permet de minorer des combinaisons linéaires de deux logarithmes de nombres algébriques avec des coefficients algébriques. Nous généralisons cette méthode en plusieurs variables pour minorer des combinaisons linéaires de plusieurs logarithmes.

Abstract

It's well known that Schneider's classical method (involving functions of a single complex variable) yields lower bounds for linear combinations of two logarithms of algebraic numbers with algebraic coefficients. We extend this method to functions of several variables and deduce an estimate for linear combinations of several logarithms.

    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Minorations de Combinaisons Linéaires de Logarithmes de Nombres Algébriques
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Minorations de Combinaisons Linéaires de Logarithmes de Nombres Algébriques
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Minorations de Combinaisons Linéaires de Logarithmes de Nombres Algébriques
      Available formats
      ×

Copyright

References

Hide All
[B] Baker, A., The theory of linear forms in logarithms, Chap.l de : Transcendence Theory, Advances and Applications, (ed. A. Baker and D.W.Masser), Academic Press (1977), 127.
[BGMMS] Blass, J., Glass, A.M., Manski, D.K., Meronk, D.B. and Steiner, R.P., Constants for lower bounds for linear forms in the logarithms of algebraic numbers, Acta Arith. 55(1990), 1-22, Problèmes Diophantiens 1987-1988, Publ. Univ. P. et M. Curie, Paris VI, (2) 88, 31p.
[G] Gel, A.O.'fond, Transcendental and algebraic numbers, Moscou, 1952, Dover, New York, 1960.
[LMPW] Loxton, J.H., Mignotte, M., van der Poorten, A.J. and Waldschmidt, M., A lower bound for linear forms in the logarithms of algebraic numbers, C.R. Acad. Sci. Canada 11(1987), 119124.
[Ma] Masser, D.W., On polynomials and exponential polynomials in several variables, Invent. Math. 63(1981), 8195.
[MW1] Mignotte, M. and Waldschmidt, M., Linear forms in two logarithms and Schneider's method, Math. Ann. 231(1978), 241267.
[MW2] Mignotte, M. and Waldschmidt, M., Linear forms in two logarithms and Schneider's method, II, Acta Arith. 53(1989), 251287.
[MW3] Mignotte, M. and Waldschmidt, M., Linear forms in two logarithms and Schneider's method, III, Ann. Fac. Sci. Toulouse 97(1989), 4375.
[P] Philippon, P., Lemme de zéros dans les groupes algébriques commutatifs, Bull. Soc. Math. France 114(1986), 355-383, et 115(1987), 397398.
[PW1] Philippon, P. et Waldschmidt, M., Formes linéaires de logarithmes sur les groupes algébriques commutatifs, Illinois J. Math. 32(1988), 281314.
[PW2] Philippon, et Waldschmidt, M., Lower bounds for linear forms in logarithms. In: Chap. 18 de New Advances in Transcendence Theory, (ed. Baker, A.), Cambridge Univ. Press (1988), 280312.
[DPP] Ping, Dong Ping, Minorations de combinaisons linéaires de logarithmes de nombres algébriques padiques, manuscrit, 1991.
[S] Schneider, Th., Transzendenzuntersuchungen periodischer Funktionen. I. Transzendenzvon Potenzen, J. reine angew. Math. 172(1934), 6569.
[Wl] Waldschmidt, M., A lower bound for linear forms in logarithms, Acta Arith. 37(1980), 257283.
[W2] Waldschmidt, M., Transcendance et exponentielles en plusieurs variables, Invent. Math. 63(1981), 97127.
[W3] Waldschmidt, M., Fonctions auxiliaires et fonctionnelles analytiques, J. Analyse Math. 56(1991), 231279.
[W4] Waldschmidt, M., Nouvelles méthodes pour minorer des combinaisons linéaires de logarithmes de nombres algébriques, Sém. Th. Nombres Bordeaux 3(1991), 129185.
[W5] Waldschmidt, M., Nouvelles méthodes pour minorer des combinaisons linéaires de logarithmes de nombres algébriques (II), Problèmes Diophantiens 1989-1990, Publ. Univ. P. et M. Curie, Paris VI, (2) 93(1991), 36p.
[Wü] Wûstholz, G., A new approach to Baker's theorem on linear forms in logarithms (III), In: Chap. 25 de New Advances in Transcendence Theory, (ed. A. Baker), Cambridge Univ. Press, (1988) 399410.
[Y] Kunrui, Yu, Linear forms in p-adic logarithms, Acta Arith. 53(1989), 107186.
MathJax
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed