Skip to main content Accessibility help

Large Irredundant Sets in Operator Algebras

  • Clayton Suguio Hida (a1) and Piotr Koszmider (a2)


A subset ${\mathcal{X}}$ of a C*-algebra ${\mathcal{A}}$ is called irredundant if no $A\in {\mathcal{X}}$ belongs to the C*-subalgebra of ${\mathcal{A}}$ generated by ${\mathcal{X}}\setminus \{A\}$ . Separable C*-algebras cannot have uncountable irredundant sets and all members of many classes of nonseparable C*-algebras, e.g., infinite dimensional von Neumann algebras have irredundant sets of cardinality continuum.

There exists a considerable literature showing that the question whether every AF commutative nonseparable C*-algebra has an uncountable irredundant set is sensitive to additional set-theoretic axioms, and we investigate here the noncommutative case.

Assuming $\diamondsuit$ (an additional axiom stronger than the continuum hypothesis), we prove that there is an AF C*-subalgebra of ${\mathcal{B}}(\ell _{2})$ of density $2^{\unicode[STIX]{x1D714}}=\unicode[STIX]{x1D714}_{1}$ with no nonseparable commutative C*-subalgebra and with no uncountable irredundant set. On the other hand we also prove that it is consistent that every discrete collection of operators in ${\mathcal{B}}(\ell _{2})$ of cardinality continuum contains an irredundant subcollection of cardinality continuum.

Other partial results and more open problems are presented.



Hide All

The research of author C. S. H. was partially supported by doctoral scholarships CAPES: 1427540 and CNPq: 167761/2017-0 and 201213/2016-8. The research of the author P. K. was partially supported by grant PVE Ciência sem Fronteiras - CNPq (406239/2013-4).



Hide All
[1]Abraham, U., Rubin, M., and Shelah, S., On the consistency of some partition theorems for continuous colorings, and the structure of 1-dense real order types. Ann. Pure Appl. Logic 29(1985), no. 2, 123206.
[2]Akemann, C., Left ideal structure of C*-algebras. J. Functional Analysis 6(1970), 305317.
[3]Akemann, C. and Weaver, N., Consistency of a counterexample to Naimark’s problem. Proc. Natl. Acad. Sci. USA 101(2004), no. 20, 75227525.
[4]Akemann, C. and Weaver, N., 𝓑(H) has a pure state that is not multiplicative on any masa. Proc. Natl. Acad. Sci. USA 105(2008), no. 14, 53135314.
[5]Arveson, W., An invitation to C -algebras. Graduate Texts in Mathematics, 39, Springer-Verlag, New York-Heidelberg, 1976.
[6]Bell, M., Ginsburg, J., and Todorcevic, S., Countable spread of expY and 𝜆Y. Topology Appl. 14(1982), no. 1, 112.
[7]Bice, T. and Koszmider, P., A note on the Akemann-Doner and Farah-Wofsey constructions. Proc. Amer. Math. Soc. 145(2017), no. 2, 681687.
[8]Brech, C. and Koszmider, P., Thin-very tall compact scattered spaces which are hereditarily separable. Trans. Amer. Math. Soc. 363(2011), no. 1, 501519.
[9]Brech, C. and Koszmider, P., On biorthogonal systems whose functionals are finitely supported. Fund. Math. 213(2011), no. 1, 4366.
[10]Carotenuto, G., An introduction to OCA. Notes on lectures by Matteo Viale. 2014.
[11]Davidson, K., C*-algebras by example. Fields Institute Monographs, 6, American Mathematical Society, Providence, RI, 1996.
[12]Dzamonja, M. and Juhasz, I., CH, a problem of Rolewicz and bidiscrete systems. Topol. Appl. 158(2011), 24582494.
[13]Enflo, P. and Rosenthal, H., Some results concerning L p(𝜇)-spaces. J. Functional Analysis 14(1973), 325348.
[14]Engelking, R., General topology. Translated from the Polish by the author, Second ed., Sigma Series in Pure Mathematics, 6, Heldermann Verlag, Berlin, 1989.
[15]Farah, I., Analytic quotients: theory of liftings for quotients over analytic ideals on the integers. Mem. Amer. Math. Soc. 148(2000), no. 702.
[16]Farah, I. and Hirshberg, I., Simple nuclear C*-algebras not isomorphic to their opposites. Proc. Natl. Acad. Sci. USA 114(2017), no. 24, 62446249.
[17]Farah, I. and Katsura, T., Nonseparable UHF algebras I: Dixmier’s problem. Adv. Math. 225(2010), no. 3, 13991430.
[18]Ghasemi, S. and Koszmider, P., Noncommutative Cantor-Bendixson derivatives and scattered C*-algebras. Topology Appl. 240(2018), 183209.
[19]Ghasemi, S. and Koszmider, P., A non-stable C*-algebra with an elementary essential composition series. arxiv:1712.02090
[20]Hajek, P., Montesinos Santalucia, V., Vanderwerff, J., and Zizler, V., Biorthogonal systems in Banach spaces. CMS Books in Mathematics/Ouvrages de Mathematiques de la SMC, 26, Springer, New York, 2008.
[21]Hodel, R., Cardinal functions. I. In: Handbook of set-theoretic topology. North-Holland, Amsterdam, 1984, pp. 161.
[22]Hofmann, K. and Neeb, K.-H., Epimorphisms of C*-algebras are surjective. Arch. Math. (Basel) 65(1995), no. 2, 134137.
[23]Heindorf, L., A note on irredundant sets. Algebra Universalis 26(1989), no. 2, 216221.
[24]Hida, C., Two cardinal inequalities about bidiscrete systems. Topology Appl. 212(2016), 7180.
[25]Jech, T., Set theory, The third millennium ed., Springer Monographs in Mathematics, Springer-Verlag, Berlin, 2003.
[26]Jensen, H., Scattered C*-algebras. Math. Scand. 41(1977), no. 2, 308314.
[27]Jensen, H., Scattered C*-algebras. II. Math. Scand. 43(1979), no. 2, 308310.
[28]Koppelberg, S., Handbook of Boolean algebras. Vol. 1. North-Holland Publishing Co., Amsterdam, 1989.
[29]Koszmider, P., On a problem of Rolewicz about Banach spaces that admit support sets. J. Funct. Anal. 257(2009), no. 9, 27232741.
[30]Koszmider, P., Some topological invariants and biorthogonal systems in Banach spaces. Extracta Math. 26(2011), 271294.
[31]Koszmider, P., On the problem of compact totally disconnected reflection of nonmetrizability. Topology Appl. 213(2016), 154166.
[32]Koszmider, P., On constructions with 2-cardinals. Arch. Math. Logic 56(2017), no. 7–8, 849876.
[33]Kunen, K., An introduction to independence proofs. Studies in Logic and the Foundations of Mathematics, 102, North-Holland Publishing Co., Amsterdam-New York, 1980.
[34]Kusuda, M., C*-algebras in which every C*-subalgebra is AF. Q. J. Math. 63(2012), no. 3, 675680.
[35]Lin, H. X., The structure of quasimultipliers of C*-algebras. Trans. Amer. Math. Soc. 315(1989), no. 1, 147172.
[36]Lopez, F. and Todorcevic, S., Trees and gaps from a construction scheme. Proc. Amer. Math. Soc. 145(2017), no. 2, 871879.
[37]Lopez, F., Banach spaces from a construction scheme. J. Math. Anal. Appl. 446(2017), no. 1, 426435.
[38]Mostowski, A. and Tarski, A., Booleshe Ringe mit ordneter basis. Fund. Math. 32 6986.
[39]Murphy, G. J., C*-algebras and operator theory. Academic Press, Inc., Boston, MA, 1990.
[40]Negrepontis, S., Banach spaces and topology. In: Handbook of set-theoretic topology. North-Holland, Amsterdam, 1984, pp. 10451142.
[41]Ogasawara, T., Finite-dimensionality of certain Banach algebras. J. Sci. Hiroshima Univ. Ser. A 17(1954), 359364.
[42]Olsen, C. and Zame, W., Some C*-alegebras with a single generator. Trans. Amer. Math. Soc. 215(1976), 205217.
[43]Ostaszewski, A. J., On countably compact, perfectly normal spaces. J. London Math. Soc. (2) 14(1976), no. 3, 505516.
[44]Pełczyński, A. and Semadeni, Z., Spaces of continuous functions. III. Spaces C (𝛺) for 𝜔 without perfect subsets. Studia Math. 18(1959), 211222.
[45]Popa, S., Orthogonal pairs of ∗-subalgebras in finite von Neumann algebras. J. Operator Theory 9(1983), no. 2, 253268.
[46]Rubin, M., A Boolean algebra with few subalgebras, interval Boolean algebras and retractiveness. Trans. Amer. Math. Soc. 278(1983), no. 1, 6589.
[47]Stampfli, J. G., The norm of a derivation. Pacific J. Math. 33(1970), 737747.
[48]Thiel, H., The generator rank for C*-algebras. arxiv:1210.6608
[49]Thiel, H. and Winter, W., The generator problem for 𝓩-stable C*-algebras. Trans. Amer. Math. Soc. 366(2014), no. 5, 23272343.
[50]Tomiyama, J., A characterization of C*-algebras whose conjugate spaces are separable. Tohoku Math. J. 15(1963), 96102.
[51]Todorcevic, S., Partition problems in topology. Contemporary Mathematics, 84, American Mathematical Society, Providence, RI, 1989.
[52]Todorcevic, S., Irredundant sets in Boolean algebras. Trans. Am. Math. Soc. 339(1993), 3544.
[53]Todorcevic, S., Biorthogonal systems and quotient spaces via Baire category methods. Math. Ann. 335(2006), 687715.
[54]Todorcevic, S., A construction scheme for non-separable structures. Adv. Math. 313(2017), 564589.
[55]Velleman, D., 𝜔-morasses, and a weak form of Martin’s axiom provable in ZFC. Trans. Amer. Math. Soc. 285(1984), 617627.
[56]Wojtaszczyk, P., On linear properties of separable conjugate spaces of C -algebras. Studia Math. 52(1974), 143147.
MathJax is a JavaScript display engine for mathematics. For more information see


MSC classification

Large Irredundant Sets in Operator Algebras

  • Clayton Suguio Hida (a1) and Piotr Koszmider (a2)


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.