Skip to main content Accessibility help
×
Home

Eigenvalue Optimisation on Flat Tori and Lattice Points in Anisotropically Expanding Domains

  • Jean Lagacé (a1)

Abstract

This paper is concerned with the maximisation of the $k$ -th eigenvalue of the Laplacian amongst flat tori of unit volume in dimension $d$ as $k$ goes to infinity. We show that in any dimension maximisers exist for any given $k$ , but that any sequence of maximisers degenerates as $k$ goes to infinity when the dimension is at most 10. Furthermore, we obtain specific upper and lower bounds for the injectivity radius of any sequence of maximisers. We also prove that flat Klein bottles maximising the $k$ -th eigenvalue of the Laplacian exhibit the same behaviour. These results contrast with those obtained recently by Gittins and Larson, stating that sequences of optimal cuboids for either Dirichlet or Neumann boundary conditions converge to the cube no matter the dimension. We obtain these results via Weyl asymptotics with explicit control of the remainder in terms of the injectivity radius. We reduce the problem at hand to counting lattice points inside anisotropically expanding domains, where we generalise methods of Yu. Kordyukov and A. Yakovlev by considering domains that expand at different rates in various directions.

Copyright

Footnotes

Hide All

The research of the author was supported by NSERC’s Alexander-Graham-Bell doctoral scholarship.

Footnotes

References

Hide All
[1] Antunes, P. R. S. and Freitas, P., Numerical optimization of low eigenvalues of the Dirichlet and Neumann Laplacians . J. Optim. Theory Appl. 154(2012), 235257. https://doi.org/10.1007/s10957-011-9983-3
[2] Antunes, P. R. S. and Freitas, P., Optimal spectral rectangles and lattice ellipses . Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 469(2013), no. 2015, 20120492. https://doi.org/10.1098/rspa.2012.0492
[3] Banaszczyk, W., New bounds in some transference theorems in the geometry of numbers . Math. Ann. 296(1993), 625635. https://doi.org/10.1007/BF01445125
[4] van den Berg, M., Bucur, D., and Gittins, K., Maximising Neumann eigenvalues on rectangles . Bull. Lond. Math. Soc. 48(2016), 877894. https://doi.org/10.1112/blms/bdw049
[5] van den Berg, M. and Gittins, K., Minimizing Dirichlet eigenvalues on cuboids of unit measure . Mathematika 63(2017), 469482. https://doi.org/10.1112/S0025579316000413
[6] Berger, A., The eigenvalues of the Laplacian with Dirichlet boundary condition in ℝ2 are almost never minimized by disks . Ann. Global Anal. Geom. 47(2015), 285304. https://doi.org/10.1007/s10455-014-9446-9
[7] Berger, M., Gauduchon, P., and Mazet, E., Le spectre d’une variété riemannienne . Lecture Notes in Mathematics, 194, Springer-Verlag, Berlin-New York, 1971.
[8] Buser, P., A note on the isoperimetric constant . Ann. Sci. École Norm. Sup. (4) 15(1982), 213230.
[9] Cassels, J. W. S., An introduction to the geometry of numbers . Die Grundlehren der mathematischen Wissenschaften, Band 99, Springer-Verlag, Berlin-New York, 1971.
[10] Colbois, B. and Dodziuk, J., Riemannian metrics with large 𝜆1 . Proc. Amer. Math. Soc. 122(1994), 905906. https://doi.org/10.2307/2160770
[11] Duistermaat, J. J. and Guillemin, V. W., The spectrum of positive elliptic operators and periodic bicharacteristics . Invent. Math. 29(1975), 3979. https://doi.org/10.1007/BF01405172
[12] Faber, G., Beweis, dass unter allen homogenen Membranen von gleicher Fläche und gleicher Spannung die kreisförmige den tiefsten Grundton gibt . Sitzungsber. Bayer. Akad. Wiss. München, Math.-Phys. Kl., 1923, pp. 169172.
[13] Gittins, K. and Larson, S., Asymptotic behaviour of cuboids optimising Laplacian eigenvalues . Integral Equations Operator Theory 89(2017), 607629. https://doi.org/10.1007/s00020-017-2407-5
[14] Hassannezhad, A., Kokarev, G., and Polterovich, I., Eigenvalue inequalities on Riemannian manifolds with a lower Ricci curvature bound . J. Spectr. Theory 6(2016), 807835. https://doi.org/10.4171/JST/143
[15] Hersch, J., Quatre propriétés isopérimétriques de membranes sphériques homogènes . C. R. Acad. Sci. Paris Sér. A-B 270(1970), A1645A1648.
[16] Iosevich, A. and Liflyand, E., Decay of the Fourier transform, analytic and geometric aspects . Birkhäuser/Springer, Basel, 2014. https://doi.org/10.1007/978-3-0348-0625-1
[17] Kao, C.-Y., Lai, R., and Osting, B., Maximization of Laplace-Beltrami eigenvalues on closed Riemannian surfaces . ESAIM Control Optim. Calc. Var. 23(2017), 685720. https://doi.org/10.1051/cocv/2016008
[18] Karpukhin, M., Nadirashvili, N., Penskoi, A. V., and Polterovich, I., An isoperimetric inequality for Laplace eigenvalues on the sphere . J. Diff. Geom., to appear.
[19] Kordyukov, Yu. A. and Yakovlev, A. A., Lattice points in domains and adiabatic limits . (Russian) Algebra i Analiz 23(2011), 8095. https://doi.org/10.1090/S1061-0022-2012-01225-2
[20] Kordyukov, Yu. A. and Yakovlev, A. A., The problem of the number of integer points in families of anisotropically expanding domains, with applications to spectral theory . Mat. Zametki 92(2012); trans. in Math. Notes 92(2012), no. 3–4, 574–576. https://doi.org/10.1134/S0001434612090295
[21] Kordyukov, Yu. A. and Yakovlev, A. A., The number of integer points in a family of anisotropically expanding domains . Monatsh. Math. 178(2015), 97111. https://doi.org/10.1007/s00605-015-0787-7
[22] Kordyukov, Yu. A. and Yakovlev, A. A., On a problem in geometry of numbers arising in spectral theory . Russ. J. Math. Phys. 22(2015), 473482. https://doi.org/10.1134/S106192081504007X
[23] Krahn, E., Über eine von Rayleigh formulierte Minimaleigenschaft des Kreises . Math. Ann. 94(1925), 97100. https://doi.org/10.1007/BF01208645
[24] Krahn, E., Über Minimaleigenschaften der Kugel in drei und mehr Dimensionen . Acta Comm. Univ. Tartu (Dorpat) A9(1926), 144.
[25] Lagacé, J. and Parnovski, L., A generalised Gauss circle problem and integrated density of states . J. Spectr. Theory 6(2016), 859879. https://doi.org/10.4171/JST/145
[26] Nadirashvili, N., Berger’s isoperimetric problem and minimal immersions of surfaces . Geom. Funct. Anal. 6(1996), 877897. https://doi.org/10.1007/BF02246788
[27] Szegö, G., Inequalities for certain eigenvalues of a membrane of given area . J. Rational Mech. Anal. 3(1954), 343356. https://doi.org/10.1512/iumj.1954.3.53017
[28] Weinberger, H. F., An isoperimetric inequality for the N-dimensional free membrane problem . J. Rational Mech. Anal. 5(1956), 633636. https://doi.org/10.1512/iumj.1956.5.55021
MathJax
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.

Keywords

MSC classification

Eigenvalue Optimisation on Flat Tori and Lattice Points in Anisotropically Expanding Domains

  • Jean Lagacé (a1)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed