Hostname: page-component-7479d7b7d-8zxtt Total loading time: 0 Render date: 2024-07-11T09:29:07.489Z Has data issue: false hasContentIssue false

Attraction of male Pandemis limitata (Lepidoptera: Tortricidae) to natural and synthetic pheromone sources: importance for assessing communication disruption

Published online by Cambridge University Press:  02 April 2012

Naomi C. DeLury*
Affiliation:
Agriculture and Agri-Food Canada, Pacific Agri-Food Research Centre, 4200 Hwy 97, Summerland, British Columbia, Canada V0H 1Z0
Gary J.R. Judd
Affiliation:
Agriculture and Agri-Food Canada, Pacific Agri-Food Research Centre, 4200 Hwy 97, Summerland, British Columbia, Canada V0H 1Z0
Mark G.T. Gardiner
Affiliation:
Agriculture and Agri-Food Canada, Pacific Agri-Food Research Centre, 4200 Hwy 97, Summerland, British Columbia, Canada V0H 1Z0
*
1Corresponding author (e-mail: deluryn@agr.gc.ca).

Abstract

In flight-tunnel assays in both clean and pheromone-permeated air, we compared attraction and behavioural responses of male Pandemis limitata (Robinson) to “calling” females, female pheromone gland extract (FGE), and synthetic sources of pheromone. In clean air, female-baited traps caught significantly more males than traps baited with rubber septa lures loaded with 10 or 100 µg of the known pheromone components ((Z)-11-tetradecenyl acetate (Z11-14:Ac) and (Z)-9-tetradecenyl acetate) blended in a 91:9 or 94:6 ratio. Traps baited with septa loaded with 500 µg of the 94:6 blend caught as many males as did female-baited traps. Proportions of males engaging in wing fanning, take-off flight, locking onto the plume, and upwind flight towards a rubber septum loaded with 100 or 500 µg of the 94:6 blend were not significantly different from proportions exhibiting these behaviours in response to calling females. Only 500 µg lures elicited as much source contact in the same time as did a calling female. In clean air, traps baited with FGE applied to filter paper at 5 or 10 female equivalents caught as many males as did calling females. In air treated with Z11-14:Ac applied as a pheromone disruptant, females attracted more males and did so sooner than did five equivalents of FGE on filter paper. Consequently, disruption of male orientation to calling females was significantly shorter (74 h) than disruption of orientation to FGE (146 h). However, FGE dispensed from a piezoelectric microsprayer at a rate equivalent to 50 pg of Z11-14:Ac·min–1 caught as many males as a calling female. At this delivery rate, two-choice microsprayer bioassays revealed that FGE containing the two known components at a 91:9 ratio was more attractive than a synthetic blend of these two pheromone components alone at the same ratio. In air permeated with Z11-14:Ac, disruption of orientation to this FGE lasted 74 h, equivalent to disruption of orientation to females. These results suggest the published two-component pheromone blend for P. limitata is likely incomplete, and in the absence of suitable synthetic attractants, we recommend use of calling females or FGE delivered using a microsprayer system for any laboratory examination of communication disruption in this species.

Résumé

Nous avons comparé dans des tunnels de vol l'attrait et les réactions comportementales de mâles de Pandemis limitata (Robinson) à des « appels » de femelles, à des extraits de glandes à phéromones de femelles (FGE) et à des sources synthétiques de phéromones dans de l'air pur et de l'air saturé de phéromone. En air pur, les pièges avec des femelles comme appâts capturent significativement plus de mâles que les pièges munis de leurres à membrane de caoutchouc contenant 10 ou 100 µg des composantes connues de la phéromone (acétate de (Z)-11-tétradécényle et acétate de (Z)-9-tétradécényle) mélangées respectivement dans des proportions de 91:9 et de 94:6. Les pièges munis de membranes contenant 500 µg du mélange 94:6 capturent autant de mâles que les pièges contenant des femelles. Les proportions de mâles qui battent de l'aile, prennent leur envol, se placent dans le jet d'air ou volent vers la membrane de caoutchouc contenant 100 ou 500 µg du mélange 94:6 ne diffèrent pas significativement des proportions de mâles ayant les mêmes comportements en présence de femelles en appel. Seuls les leurres contenant 500 µg du mélange provoquent autant de contacts avec la source dans le même intervalle de temps qu'une femelle en appel. En air pur, les pièges appâtés de FGE sur papier filtre à raison d'équivalents de 5 et de 10 femelles capturent autant de mâles que les pièges contenant des femelles en appel. Dans de l'air traité à l'acétate de (Z)-11-tétradécényle (Z11-14:Ac) comme perturbateur de la phéromone, les pièges avec femelles attirent plus de mâles et le font plus rapidement que des pièges munis de FGE sur papier filtre à raison d'un équivalent de cinq femelles. La perturbation de l'orientation des mâles vers les femelles en appel est ainsi de plus courte durée (74 h) que la perturbation de l'orientation vers le FGE (146 h). Cependant, lorsque le FGE est libéré au moyen d'un microvaporisateur piézoélectrique à raison d'un équivalent de 50 pg de Z11-14:Ac·min–1, le piège capture autant de mâles qu'un piège muni d'une femelle en appel. À ce taux de libération, des tests à deux choix à l'aide du microvaporisateur montrent que le FGE contenant les deux composantes connues dans une proportion de 91:9 est plus attractif qu'un mélange synthétique des seules deux composantes de la phéromone dans la même proportion. En air saturé de Z11-14:Ac, la perturbation de l'orientation vers le FGE dure 74 h, ce qui est équivalent à la perturbation de l'orientation vers les femelles. Ces résultats indiquent que le mélange à deux composantes de la phéromone de P. limitata décrit dans la littérature est vraisemblablement incomplet. En l'absence d'appât synthétique approprié, nous recommandons d'utiliser des femelles en appel ou du FGE libéré par un système de microvaporisateurs pour toute étude en laboratoire de la perturbation de la communication chez cette espèce.

[Traduit par la Rédaction]

Type
Articles
Copyright
Copyright © Entomological Society of Canada 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bartell, R.J. 1982. Mechanisms of communication disruption by pheromone in the control of Lepidoptera: a review. Physiological Entomology, 7: 353364.Google Scholar
Brunner, J.F. 1983. Pandemis leafroller, a pest of increasing concern to Washington fruit growers. Proceedings of the Washington Horticultural Association, 79: 119125.Google Scholar
Byers, J.A. 1988. Novel diffusion—dilution method for release of semiochemicals: testing pheromone component ratios on western pine beetle. Journal of Chemical Ecology, 1: 475491.Google Scholar
Calkins, C.O. 1998. Review of the codling moth area-wide suppression program in the western United States. Journal of Agricultural Entomology, 15: 327333.Google Scholar
DeLury, N.C., Judd, G.J.R., and Gardiner, M.G.T. 2005. Antennal detection of sex pheromone by female Pandemis limitata (Robinson) (Lepidoptera: Tortricidae) and its impact on their calling behaviour. Journal of the Entomological Society of British Columbia, 102: 312.Google Scholar
El-Sayed, A., and Trimble, R.M. 2002. Relative attractiveness of natural and synthetic pheromone of three tortricid tree fruit pests. Environmental Entomology, 31: 960964.CrossRefGoogle Scholar
El-Sayed, A., Godde, J., and Arn, H. 1999. Sprayer for quantitative application of odor stimuli. Environmental Entomology, 28: 947953.Google Scholar
Evenden, M.L. 1998. Semiochemical-based disruption of mate-finding behaviour in Choristoneura rosaceana (Harris) and Pandemis limitata (Robinson) (Lepidoptera:Tortricidae) in British Columbia apple orchards. Ph.D. thesis, Simon Fraser University, Burnaby, British Columbia.Google Scholar
Evenden, M.L., Judd, G.J.R., and Borden, J.H. 1999 a. Simultaneous disruption of pheromone communication in Choristoneura rosaceana and Pandemis limitata with pheromone and antagonist blends. Journal of Chemical Ecology, 25: 501517.Google Scholar
Evenden, M.L., Judd, G.J.R., and Borden, J.H. 1999 b. Mating disruption of two sympatric, orchard-inhabiting tortricids, Choristoneura rosaceana and Pandemis limitata (Lepidoptera: Tortricidae) with pheromone components of both species' blends. Journal of Economic Entomology, 92: 380390.Google Scholar
Evenden, M.L., Judd, G.J.R., and Borden, J.H. 2000. Investigations of mechanisms of pheromone communication disruption of Choristoneura rosaceana (Harris) in a wind tunnel. Journal of Insect Behaviour, 13: 499510.CrossRefGoogle Scholar
Gut, L.J., and Brunner, J.F. 1998. Pheromone-based management of codling moth (Lepidoptera: Tortricidae) in Washington apple orchards. Journal of Agricultural Entomology, 15: 387405.Google Scholar
Judd, G.J.R., and Gardiner, M.G.T. 2004. Simultaneous disruption of pheromone communication and mating in Cydia pomonella, Choristoneura rosaceana and Pandemis limitata (Lepidoptera: Tortricidae) using Isomate–CM/LR in apple orchards. Journal of the Entomological Society of British Columbia, 101: 313.Google Scholar
Judd, G.J.R., DeLury, N.C., and Gardiner, M.G.T. 2005. Examining disruption of pheromone communication in Choristoneura rosaceana and Pandemis limitata using microencapsulated (Z)-11-tetradecenyl acetate applied in a laboratory flight tunnel. Entomologia Experimentalis et Applicata, 114: 3545.CrossRefGoogle Scholar
Justus, K.A., Murlis, J., Jones, C., and Cardé, R.T. 2002. Measurement of odor-plume structure in a wind tunnel using a photoionization detector and a tracer gas. Environmental Fluid Mechanics, 2: 115142.Google Scholar
Knight, A.L. 1995. The impact of codling moth (Lepidoptera; Tortricidae) mating disruption on apple pest management in Yakima Valley, Washington. Journal of the Entomological Society of British Columbia, 92: 2938.Google Scholar
Knight, A.L., and Turner, J.E. 1999. Mating disruption of Pandemis spp. (Lepidoptera: Tortricidae). Environmental Entomology, 28: 8187.Google Scholar
Madsen, H.F., and Madsen, B.J. 1980. Response of four leafroller species (Lepidoptera: Tortricidae) to sex attractants in British Columbia orchards. The Canadian Entomologist, 112: 427430.Google Scholar
Miller, J.R., and Roelofs, W.L. 1978. Sustained-flight tunnel for measuring insect responses to wind-borne sex pheromones. Journal of Chemical Ecology, 4: 187198.CrossRefGoogle Scholar
Roelofs, W., Cardé, A., Hill, A., and Cardé, R. 1976. Sex pheromone of the threelined leafroller, Pandemis limitata. Environmental Entomology, 5: 649652.Google Scholar
Shorey, H.H., and Hale, R.L. 1965. Mass-rearing of the larvae of nine noctuid species on a simple artificial medium. Journal of Economic Entomology, 58: 522524.CrossRefGoogle Scholar
Stelinski, L.L., Miller, J.R., and Gut, L.J. 2005. Captures of two leafroller moth species (Lepidoptera: Tortricidae) in traps baited with varying dosages of pheromone lures or commercial mating-disruption dispensers in untreated and pheromone-treated orchard plots. The Canadian Entomologist, 137: 98109.Google Scholar
Zar, J.H. 1996. Biostatistical analysis. 3rd ed. Prentice Hall, Upper Saddle River, New Jersey.Google Scholar