[1]
Abrams, G. and Aranda Pino, G., ‘The Leavitt path algebras of arbitrary graphs’, Houston J. Math.
34 (2008), 423–442.

[2]
Abrams, G., Louly, A., Pardo, E. and Smith, C., ‘Flow invariants in the classification of Leavitt path algebras’, J. Algebra
333 (2011), 202–231.

[3]
Aranda Pino, G., Martín Barquero, D., Martín González, C. and Siles Molina, M., ‘The socle of a Leavitt path algebra’, J. Pure Appl. Algebra
212 (2008), 500–509.

[4]
Arklint, S., Gabe, J. and Ruiz, E., ‘Hereditary
$C^{\ast }$
-subalgebras of graph algebras’, Preprint, 2016, arXiv:1604.03085.
[5]
Bates, T., ‘Applications of the gauge-invariant uniqueness theorem for graph algebras’, Bull. Aust. Math. Soc.
66 (2002), 57–67.

[6]
Bates, T. and Pask, D., ‘Flow equivalence of graph algebras’, Ergodic Theory Dynam. Systems
24 (2004), 367–382.

[7]
Clark, L. O., Flynn, C. and an Huef, A., ‘Kumjian–Pask algebras of locally convex higher-rank graphs’, J. Algebra
399 (2014), 445–474.

[8]
Clark, L. O. and Pangalela, Y. E. P., ‘Kumjian–Pask algebras of finitely-aligned higher-rank graphs’, Preprint, 2016, arXiv:1512.06547.
[9]
Clark, L. O. and Sims, A., ‘Equivalent groupoids have Morita equivalent Steinberg algebras’, J. Pure Appl. Algebra
219 (2015), 2062–2075.

[10]
Crisp, T., ‘Corners of graph algebras’, J. Operator Theory
60 (2008), 253–271.

[11]
Crisp, T. and Gow, D., ‘Contractible subgraphs and Morita equivalence of graph *C*
^{∗} -algebras’, Proc. Amer. Math. Soc.
134 (2006), 2003–2013.

[12]
Drinen, D. and Sieben, N., ‘
*C*
^{∗} -equivalences of graphs’, J. Operator Theory
45 (2001), 209–229.

[13]
Drinen, D. and Tomforde, M., ‘The *C*
^{∗} -algebras of arbitrary graphs’, Rocky Mountain J. Math.
35 (2005), 105–135.

[14]
Johansen, R. and Sørensen, A. P. W., ‘The Cuntz splice does not preserve ∗-isomorphism of Leavitt path algebras over ℤ’, J. Pure Appl. Algebra
220 (2016), 3966–3983.

[15]
Nasr-Isfahani, A. R., ‘Singular equivalence of finite dimensional algebras with radical square zero’, J. Pure Appl. Algebra
220 (2016), 3948–3965.

[16]
Raeburn, I., Graph Algebras, CBMS Regional Conference Series in Mathematics, 103 (American Mathematical Society, Providence, RI, 2005).

[17]
Sørensen, A. P. W., ‘Geometric classification of simple graph algebras’, Ergodic Theory Dynam. Systems
33 (2013), 1199–1220.

[18]
Tomforde, M., ‘Leavitt path algebras with coefficients in a commutative ring’, J. Pure Appl. Algebra
215 (2011), 471–484.