[1]
Gosper, W., ‘Strip mining in the abandoned orefields of nineteenth century mathematics’, in: Computers in Mathematics (eds. Chudnovsky, D. V. and Jenks, R. D.) (Dekker, New York, 1990), 261–284.
[2]
Guo, V. J. W., ‘A q-analogue of the (L.2) supercongruence of Van Hamme’, J. Math. Anal. Appl.
466 (2018), 749–761.
[3]
Guo, V. J. W., ‘A q-analogue of a curious supercongruence of Guillera and Zudilin’, J. Difference Equ. Appl.
25 (2019), 342–350.
[4]
Guo, V. J. W., ‘Factors of some truncated basic hypergeometric series’, J. Math. Anal. Appl.
476 (2019), 851–859.
[5]
Guo, V. J. W. and Schlosser, M. J., ‘Some new q-congruences for truncated basic hypergeometric series’, Symmetry
11(2) (2019), Article 268, 12 pages.
[6]
Guo, V. J. W. and Zudilin, W., ‘Ramanujan-type formulae for 1/𝜋: q-analogues’, Integral Transforms Spec. Funct.
29 (2018), 505–513.
[7]
Guo, V. J. W. and Zudilin, W., ‘A q-microscope for supercongruences’, Adv. Math.
346 (2019), 329–358.
[8]
Long, L., ‘Hypergeometric evaluation identities and supercongruences’, Pacific J. Math.
249 (2011), 405–418.
[9]
Osburn, R. and Zudilin, W., ‘On the (K.2) supercongruence of Van Hamme’, J. Math. Anal. Appl.
433 (2016), 706–711.
[10]
Rahman, M., ‘Some quadratic and cubic summation formulas for basic hypergeometric series’, Canad. J. Math.
45 (1993), 394–411.
[11]
Ramanujan, S., ‘Modular equations and approximations to 𝜋’, Quart. J. Math. Oxford Ser. (2)
45 (1914), 350–372.
[12]
Straub, A., ‘Supercongruences for polynomial analogs of the Apéry numbers’, Proc. Amer. Math. Soc.
147 (2019), 1023–1036.
[13]
Swisher, H., ‘On the supercongruence conjectures of van Hamme’, Res. Math. Sci.
2 (2015), Article 18, 21 pages.
[14]
Van Hamme, L., ‘Some conjectures concerning partial sums of generalized hypergeometric series’, in: p-Adic Functional Analysis (Nijmegen, 1996), Lecture Notes in Pure and Applied Mathematics, 192 (Dekker, New York, 1997), 223–236.