Skip to main content Accessibility help
×
Home

On meromorphic functions of one complex variable having algebraic Laurent coefficients

  • Daniel Bertrand (a1) and Michel Waldschmidt (a2)

Abstract

We study the set of points at which two algebraically independent meromorphic functions have algebraic coefficients in their Laurent expansions. After a survey of the present knowledge in this field, we obtain two general transcendence criteria which sharpen previous results of Straus, Schneider and Lang. As a corollary, we give a new proof, based on Gel'fond's method, of some of Siegel's results on E-functions.

    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      On meromorphic functions of one complex variable having algebraic Laurent coefficients
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      On meromorphic functions of one complex variable having algebraic Laurent coefficients
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      On meromorphic functions of one complex variable having algebraic Laurent coefficients
      Available formats
      ×

Copyright

References

Hide All
[1]Bertrand, Daniel, “Équations différentielles algébriques et nombres transcendants dans les domaines complexes et p-adiques” (Thèse, Université de Paris VI, Paris, 1975).
[2]Bertrand, Daniel, “A transcendence criterion for meromorphic functions”, Transcendence theory: advances and applications, 187193 (Proc. Conf. Cambridge,1976.Academic Press,London, New York, San Francisco, 1977).
[3]Bertrand, Daniel, “Un théorème de Schneider-Lang sur certains domaines non simplement connexes”, Séminaire Delange-Pisot-Poitou (16e année: 1974/75), Théorie des nombres, Fasc. 2, Exp. No. G18 (Secrétariet Mathématique, Paris, 1975).
[4]Choodnovsky, G.V., “A new method for the investigation of arithmetical properties of analytic functions”, Ann. of Math. (2) 109 (1979), 353376.
[5]Choodnovsky, Gregory V., “Values of meromorphic functions of order 2”, Séminaire Delange-Pisot-Poitou (19e année: 1977/78), Théorie des nombres, Fasc. 2, Exp. No. 45 (Secrétariet Mathématique, Paris, 1978).
[6]Chudnovsky, G.V., “Singular points on complex hypersurfaces and multidimensional Schwarz lemma”, Séminaire de théorie des nombres, Paris 1979−80, 29−70 (Séminaire Delange-Pisot-Poitou. Progress in Mathematics, 12. Birkhäuser, Boston, Basel, 1981).
[7]Gramain, François, “Fonctions entières arithmétiques”, Séminaire Pierre Lelong - Henri Skoda (Analyse), 17e année, 1976/77, 96125 (Lecture Notes in Mathematics, 694. Springer–Verlag, Berlin, Heidelberg, New York, 1978).
[8]Gramain, François, “Fonctions entières arithmétiques”, Séminaire Delange-Pisot-Poitou (19e année: 1977/78), Théorie des nombres, Fasc. 1, Exp. No. 8 (Secrétariet Mathématique, Paris, 1978).
[9]Gross, Fred, “Entire functions of several variables with algebraic derivatives at certain algebraic points”. Pacific J. Math. 31 (1969), 693701.
[10]Lang, Serge, “Transcendental points on group varieties”, Topology 1 (1962), 313318.
[11]Lang, Serge, Introduction to transcendental numbers (Addison-Wesley, Reading, Massachusetts; London; Don Mills, Ontario; 1966).
[12]Mahler, Kurt, Lectures on transcendental numbers (Lecture Notes in Mathematics, 546. Springer-Verlag, Berlin, Heidelberg, New York, 1976).
[13]Pólya, G., “Über die kleinsten ganzen Funktionen, deren sämtliche Derivierte im Punkte k = 0 ganzzahlig sind”, Tôhoku Math. J. 19 (1921), 6568.
[14]Reyssat, Éric, “Travaux récents de G. V. Čudnovskij”, Séminaire Delange-Pisot-Poitou (18e année: 1976/77), Théorie des nombres, Fasc. 2, Exp. No. 29 (Secrétariet Mathématique, Paris, 1977).
[15]Schneider, Theodor, “Ein Satz über ganzwertige Funktionen als Prinzip für Transzandenzbeweise”, Math. Ann. 121 (1949), 131140.
[16]Schneider, Theodor, Einführung in die transzendenten Zahlen (Die Grundlehren der mathematischen Wissenschaften, 81. Springer–Verlag, Berlin, Göttingen, Heidelberg, 1957).
[17]Siegel, C.L., “Ueber einige Anwendungen diophantisher Approximationen”, Abh. Preuss. Akad. Wiss. Phys.-Math. Kl. (1929), No. 1. See also: “Über einige Anwendungen diophantisher Approximation”, Gesammelte Abhandlungen, Band I, 209241 (Springer-Verlag, Berlin, Heidelberg, New York, 1966).
[18]Siegel, Carl Ludwig, Transcendental numbers (Annals of Mathematics Studies, 16. Princeton University Press, Princeton, 1949).
[19]Straus, E.G., “On entire functions with algebraic derivatives at certain algebraic points”, Ann. of Math. (2) 52 (1959), 188198.
[20]Waldschmidt, Michel, “On functions of several variables having algebraic Taylor coefficients”, Transcendence theory: advances and applications, 169186 (Proc. Conf. Cambridge,1976.Academic Press,London, New York, San Francisco, 1977).
[21]Waldschmidt, Michel, Nombres transcendants et groupes algébriques (Astérisque, 69–70. Société Mathématique de France, Paris, 1979).
MathJax
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed