Skip to main content Accessibility help
×
Home

AN ALGORITHM FOR FINDING ALL ZEROS OF VECTOR FUNCTIONS

  • IBRAHEEM ALOLYAN (a1)

Abstract

Computing a zero of a continuous function is an old and extensively researched problem in numerical computation. In this paper, we present an efficient subdivision algorithm for finding all real roots of a function in multiple variables. This algorithm is based on a simple computationally verifiable necessity test for the existence of a root in any compact set. Both theoretical analysis and numerical simulations demonstrate that the algorithm is very efficient and reliable. Convergence is shown and numerical examples are presented.

    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      AN ALGORITHM FOR FINDING ALL ZEROS OF VECTOR FUNCTIONS
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      AN ALGORITHM FOR FINDING ALL ZEROS OF VECTOR FUNCTIONS
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      AN ALGORITHM FOR FINDING ALL ZEROS OF VECTOR FUNCTIONS
      Available formats
      ×

Copyright

References

Hide All
[1]Allgower, E. and Georg, K., Introduction to Numerical Continuation Methods (SIAM, Philadelphia, PA, 2003).
[2]Allgower, E., Erdmann, M. and Georg, K., ‘On the complexity of exclusion algorithms for optimization’, J. Complexity 18 (2002), 573588.
[3]Alolyan, I., ‘A new exclusion test for finding the global minimum’, J. Comput. Appl. Math. 200(2) (2007), 491502.
[4]Csendes, T. and Ratz, D., ‘Subdivision direction selection in interval methods for global optimization’, SIAM J. Numer. Anal. 34(3) (1997), 922938.
[5]Georg, K., ‘A new exclusion test’, Proc. Int. Conf. on Recent Advances in Computational Mathematics, J. Comput. Appl. Math. 152(1–2) (2003), 147–160.
[6]Georg, K., ‘Improving the efficiency of exclusion algorithms’, Adv. Geom. 1 (2001), 193210.
[7]Hsu, C. S. and Guttalu, R. S., ‘Index evaluation for dynamical systems and its application to locating all of the zeros of a vector function’, J. Appl. Mech. 50 (1983), 858862.
[8]Hsu, C. S. and Zhu, W. H., ‘A simplical mapping method for locating the zeros of a function’, Quart. Appl. Math. 42 (1984), 4159.
[9]Kearfott, R., ‘Rigorous global search: continuous problems’, in: Nonconvex Optimization and its Applications, Vol. 13 (Kluwer Academic, Dordrecht, 1996).
[10]Kearfott, R. B., ‘Empirical evaluation of innovations in interval branch and bound algorithms for nonlinear algebraic systems’, SIAM J. Sci. Comput. 18(2) (1997), 574594.
[11]Moore, R., Methods and Applications of Interval Analysis, SIAM Studies in Applied Mathematics, 2 (SIAM, Philadelphia, PA, 1979).
[12]Morgan, A. P., Sommese, A. J. and Watson, L. T., ‘Finding all isolated solutions to polynomial systems using HOMPACK’, ACM Trans. Math. Software 15 (1989), 93122.
[13]Rheinboldt, W. C., Numerical Analysis of Parametrized Nonlinear Equations (Wiley, New York, 1986).
[14]Using MATLAB (The MathWorks Inc. Natick, MA, 1996).
[15]Sosonkina, M., Watson, L. T. and Stewart, D. E., ‘A note on the end game in homotopy zero curve tracking’, ACM Trans. Math. Software 22 (1996), 281287.
[16]Vrahatis, M. N. and Iordanidis, K. L., ‘A rapid generalized method of bisection for solving systems of non-linear equations’, Numer. Math. 49 (1986), 123138.
[17]Vrahatis, M. N., ‘Solving systems of nonlinear equations using the nonzero value of the topological degree’, ACM Trans. Math. Software 14 (1988), 312328.
[18]Watson, L. T., ‘Globally convergent homotopy methods: A tutorial’, Appl. Math. Comput. 31 (1989), 369396.
[19]Xu, Z.-B., Zhang, J.-S. and Leung, Y.-W., ‘A general CDC formulation for specializing the cell exclusion algorithms of finding all zeros of vector functions’, Appl. Math. Comput. 86 (1997), 235259.
[20]Yakoubsohn, J. C., ‘Numerical analysis of a bisection-exclusion method to find the zeros of univariant analytic functions’, J. Complexity 21 (2005), 651772.
MathJax
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.

Keywords

MSC classification

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed