Bernays, Paul [1935], Sur le platonisme dans les mathématiques, L'Enseignement Mathématique, vol. 34, pp. 52–69, References to the English version in (P. Benacerraf and H. Putnam, editors), *
***Philosophy of Mathematics: selected readings**
, Cambridge University Press, 1983, pp. 258-271.

Cantor, Georg [1874], Über eine Eigenschaft des Inbegriffes aller reellen algebraischen Zahlen, Journal für die reine und angewandte Mathematik, vol. 77, pp. 258–262, also in Cantor's *
***Gesammelte Abhandlungen**
, Berlin, Springer, 1932, pp. 115-118. English translation in Ewald [1996].

Cantor, Georg [1892], Über eine elementare Frage der Mannigfaltigkeitslehre, Jahresbericht der Deutschen Mathematiker-Vereinung, vol. 1, pp. 75–78, also in Cantor's *
***Gesammelte Abhandlungen**
, Berlin, Springer, 1932, pp. 278-280. English translation in Ewald [1996].

Cavaillès, J. [1938], Remarques sur la formation de la theorie abstraite des ensembles, dissertation, in Cavaillès, **
***Philosophie mathématique*
. Paris, Hermann, 1962.

Cooke, Roger [1993], Uniqueness of trigonometric series and descriptive set theory, 1870-1985, Archive for History of Exact Sciences, vol. 45, pp. 281–334.

Dedekind, Richard [1888], Was sind und was sollen die Zahlen?, reprinted in **
***Gesammelte mathematische Werke*
, vol. 3, New York, Chelsea, 1969. References to the English translation in Ewald [1996].

Dedekind, Richard [1932], Gesammelte mathematische Werke,(Fricke, R., Noether, E., and Ore, Ö., editors), Braunschweig, 3 vols. Reprint in 2 vols. New York, Chelsea, 1969.

Devlin, Keith [1984], Constructibility, Springer-Verlag, Berlin.

Ewald, William B. (editor) [1996], From Kant to Hilbert, vol. 2, Oxford University Press.

Feferman, Solomon [1965], Some applications of the notions of forcing and generic sets, Fundamenta Mathematicae, vol. 56, pp. 325–345.

Feferman, Solomon (editor) [1990], Kurt Gödel, collected works, vol. II, Oxford University Press.

Feferman, Solomon [1998], In the light of logic, Oxford University Press.

Ferreirós, José [2001], *The road to modern logic*, this Bulletin, vol. 7, pp. 441–484.

Ferreirós, José [2007], Labyrinth of thought. A history of set theory and its role in modern mathematics, Birkhäuser, Basel, (first edition 1999).

Fraenkel, Abraham, Bar-Hillel, Yehoshua, and Levy, Azriel [1973], Foundations of set theory, North-Holland, Amsterdam.

Frege, Gottlob [1893], Grundgesetze der Arithmetik, vol. 1, Pohl, Jena, reprinted Olms, Hildesheim, 1966.

Goldstein, Catherine, Schappacher, N., and Schwermer, J. (editors) [2007], The shaping of arithmetic after C. F. Gauss's Disquisitiones Arithmeticae, Berlin.

Hilbert, David [1900], Mathematische Probleme, Nachrichten von der Gesellschaft der Wissenschaften zu Göttingen (1900), reprint in **
***Gesammelte Abhandlungen*
, vol. 3, Springer, 1935, 146–56, References to the partial translation in Ewald [1996], pp. 253-297.

Hilbert, David [1925], Über das Unendliche, Mathematische Annalen, vol. 95, pp. 161–90, references to the English translation in Heijenoort [1967], 367-392.

Hintikka, Jaako [1999], Is the axiom of choice a logical or set-theoretical principle?, Dialectica, vol. 53, pp. 283–290.

Jané, Ignasi [2001], Reflections on Skolem's relativity of set-theoretical concepts, Philosophia Mathematica, vol. 9, pp. 129–153.

Jané, Ignasi [2005a], The iterative conception of sets from a Cantorian perspective, Logic, Method logy and Philosophy of Science. Proceedings of the twelfth international congress, King's College Publications, London, pp. 373–393.

Jané, Ignasi [2005b], Higher-order logic reconsidered, The Oxford handbook of philosophy of mathematics and logic (Shapiro, S., editor), Oxford University Press.

Jensen, R. [1995], *Inner models and large cardinals*, this Bulletin, vol. 1, pp. 393–407.

Jourdain, P. E. B. [1906–1914], The development of the theory of transfinite numbers, Archiv für Mathematik und Physik, vol. 10, pp. 254-281, vol. 14, 287-311, vol. 16, 21-43, vol. 22, 1–21.

Kanamori, A. and Foreman, M. (editors) [2010], Handbook of set theory, Springer, Berlin, 3 volumes. ISBN: 978-1-4020-4843-2.

Kanamori, Akihiro [1994], The higher infinite, Springer, Berlin.

Kanamori, Akihiro [1995], The emergence of descriptive set theory, From Dedekind to Gödel (Hintikka, Jaakko, editor), Kluwer, Dordrecht, pp. 241–262.

Kanamori, Akihiro [1996], *The mathematical development of set theory from Cantor to Cohen*, this Bulletin, vol. 2, pp. 1–71.

Krömer, Ralf [2007], Tool and object: A history and philosophy of category theory, Birkhäuser, Basel/Boston.

Laugwitz, Detlef [1999], Bernhard Riemann 1826–1866: Turning points in the conception of mathematics, Birkhäuser, Basel.

Lavine, Shaugan [1994], Understanding the infinite, Harvard University Press.

Maddy, Penelope [1988], Believing the axioms, Part I & II, The Journal of Symbolic Logic, vol. 53, pp. 481-511, 736–764.

Maddy, Penelope [1997], Naturalism in mathematics, Oxford University Press.

Martin, Donald A. [1976], Hilbert's first problem: The continuum hypothesis, Mathematical developments arising from Hilbert problems (Browder, Felix E., editor), American Mathematical Society, pp. 81–92.

Martin, Donald A. [1998], Mathematical evidence, Truth in mathematics (Dales, H. G. and Oliveri, G., editors), Oxford University Press.

Meschkowski, H. and Nilson, W. [1991], Georg Cantor: Briefe, Springer, Berlin.

Moore, Gregory H. [1982], Zermelo's Axiom of Choice. Its origins, development and influence, Springer, Berlin.

Moschovakis, Yiannis N. [1994], Notes on set theory, Springer-Verlag, New York.

Mostowski, Andrzej [1967], Recent results in set theory, The philosophy of mathematics (Lakatos, I., editor), North-Holland, Amsterdam.

Parsons, Charles [2008], Mathematical thought and its objects, Cambridge University Press.

Peano, Giuseppe [1889], Arithmetices principia, nova methodo exposita, Bocca, Torino, partial English translation in Heijenoort [1967].

Reck, Erich and Awodey, Steve [2002], Completeness and categoricity, Part I: 19th century axiomatics to 20th century metalogic, History and Philosophy of Logic, vol. 23, no. 1, pp. 1–30, Part II: 20th Century Metalogic to 21st Century Semantics, History and Philosophy of Logic, vol. 23 (2), pp. 77-94.

Russell, Bertrand [1910], Principia mathematica, vol. I, Cambridge University Press, with A. N. Whitehead.

Russell, Bertrand [1920], Introduction to mathematical philosophy, 2nd ed., Allen & Unwin, London, reprinted in New York, Dover, 1993.

Shapiro, Stewart [1991], Foundations without foundationalism: A case for second-order logic, Oxford University Press.

Shapiro, Stewart [1997], Philosophy of mathematics: Structure and ontology, Oxford University Press.

Simpson, Stephen G. [1999], Subsystems of second-order arithmetic, Springer, Berlin.

Skolem, Thoralf [1923], Einige Bemerkungen zur axiomatischen Begründung der Mengenlehre, Skolem's selected works in logic, Universitetsforlaget, Oslo, 1970. English translation in Heijenoort [1967].

Tait, William [2005], The provenance of pure reason: Essays in the philosophy of mathematics and its history, Oxford University Press.

Väänänen, Jouko [2001], *Second-order logic and foundations of mathematics*, this Bulletin, vol. 7, pp. 504–520.

Van Heijenoort, Jean [1967], From Frege to Gödel: A source book in mathematical logic, Harvard University Press.

Weston, Thomas [1976], Kreisel, the Continuum Hypothesis and second order set theory, Journal of Philosophical Logic, vol. 5, pp. 281–298.

Weyl, Hermann [1918], Das Kontinuum: Kritische Untersuchungen über die Grundlagen der Analysis, Veit, Leipzig, references to the reprint New York, AMS Chelsea, 1973.

Weyl, Hermann [1944], Mathematics and logic. A brief survey serving as a preface to a review of “The Philosophy of Bertrand Russell,”, American Mathematical Monthly, vol. 53, pp. 2–13.

Weyl, Hermann [1949], Philosophy of mathematics and natural science, Princeton University Press, translated with additions from the original German, published in 1927.

Wittgenstein, Ludwig [1976], Lectures on the foundations of mathematics, Cambridge, 1939, edited by Diamond, Cora, Cornell University Press, Ithaca, N.Y.

Woodin, Hugh [2001], The Continuum Hypothesis, Parts I and II, Notices of the American Mathematical Society, vol. 48, pp. 567-576, 681–690.

Zermelo, Ernst [1908], Untersuchungen über die Grundlagen der Mengenlehre, Mathematische Annalen, vol. 65, pp. 261–281, English translation in Heijenoort [1967], 199-215.