[1]Klaus, Ambos-Spies, Jockusch, Carl G., Shore, Richard A., and Soare, Robert I., *An algebraic decomposition of the recursively enumerable degrees and the coincidence of several degree classes with the promptly simple class*. Transactions of the American Mathematical Society, vol. 281 (1984), no. 1, pp. 109–128.

[2]Chang, C. C. and Jerome Keisler, H., .

[3]Cholak, Peter, Jockusch, Carl G., and Slaman, Theodore A., *On the strength of Ramsey’s theorem for pairs*. Journal of Symbolic Logic, vol. 66 (2001), no. 1, pp. 1–55.

[4]Cholak, Peter, Jockusch, Carl G., and Slaman, Theodore A., *Corrigendum to: “On the strength of Ramsey’s theorem for pairs”*. Journal of Symbolic Logic, vol. 74 (2009), no. 4, pp. 1438–1439.

[5]Chong, C. T., .

[6]Chong, C. T., Qian, Lei, Slaman, Theodore A., and Yang, Yue, ${\rm{\Sigma }}_2 $*induction and infinite injury priority arguments, Part III: Prompt sets, minimal pair and Shoenfield’s conjecture*. Israel Journal of Mathematics, vol. 121 (2001), no. 1, pp. 1–28. [7]Chong, C. T., Lempp, Steffen, and Yang, Yue, *On the role of the collection principle for* ${\rm{\Sigma }}_2^0 $-formulas in second-order reverse mathematics. Proceedings of the American Mathematical Society, vol. 138 (2010), no. 3, pp. 1093–1100. [8]Chong, C. T. and Mourad, K. J., ${\rm{\Sigma }}_n $*definable sets without* ${\rm{\Sigma }}_n $. [9]Chong, C. T. and Mourad, K. J., .

[10]Chong, C. T., Shore, Richard A., and Yang, Yue, .

[11]Chong, C. T., Slaman, Theodore A., and Yang, Yue, ${\rm{\Pi }}_1^1 $*-conservation of combinatorial principles weaker than Ramsey’s theorem for pairs*. Advances in Mathematics, vol. 230 (2012), no. 3, pp. 1060–1077. [12]Chong, C. T., Slaman, Theodore A., and Yang, Yue, *The metamathematics of stable Ramsey’s theorem for pairs*. Journal of the American Mathematical Society, vol. 27 (2014), no. 3, pp. 863–892.

[13]Chong, C. T., Slaman, Theodore A., and Yang, Yue, .

[14]Chong, C. T. and Yang, Yue, .

[15]Chong, C. T. and Yang, Yue, *Recursion theory in weak fragments of Peano arithmetic: A study of cuts*. Proceedings of the Sixth Asian Logic Conference (Beijing, China) (Chong, C. T., Feng, Q., Ding, D., Huang, Q., and Yasugi, M., editors), World Scientific, 1998, pp. 47–65.

[16]Chong, C. T. and Yang, Yue, .

[17]Chong, C. T. and Yang, Yue, .

[18]Chubb, Jennifer, Hirst, Jeffry L., and McNicholl, Timothy H., *Reverse mathematics, computability, and partitions of trees*. Journal of Symbolic Logic, vol. 74 (2009), no. 1, pp. 201–215.

[19]Barry Cooper, S., .

[20]Corduan, Jared, Groszek, Marcia J., and Mileti, Joseph R., *Reverse mathematics and Ramsey’s property for trees*. Journal of Symbolic Logic, vol. 75 (2010), no. 3, pp. 945–954.

[21]Conidis, Chris J. and Slaman, Theodore A., *Random reals, the rainbow Ramsey theorem, and arithmetic conservation*. Journal of Symbolic Logic, vol. 78 (2013), no. 1, pp. 195–206. Abstract.

[22]Csima, Barbara F. and Mileti, Joseph R., *The strength of the rainbow Ramsey theorem*. Journal of Symbolic Logic, vol. 74 (2009), no. 4, pp. 1310–1324.

[23]Downey, Rod, Hirschfeldt, Denis R., Lempp, Steffen, and Solomon, Reed, .

[24]Friedberg, Richard M., .

[25]Groszek, Marcia J., Mytilinaios, Michael E., and Slaman, Theodore A., .

[26]Groszek, Marcia J. and Slaman, Theodore A., .

[27]Hirschfeldt, Denis and Shore, Richard A., *Combinatorial principles weaker than Ramsey’s theorem for pairs*. Journal of Symbolic Logic, vol. 72 (2007), no. 1, pp. 171–206.

[28]Hirst, Jeffry L., .

[29]Jensen, Ronald B., The fine structure of the constructible hierarchy. Annals of Mathematical Logic, vol. 4 (1972), pp. 229–308.

[30]Jockusch, Carl G., *Ramsey’s theorem and recession theory*. Journal of Symbolic Logic, vol. 37 (1972), no. 2, pp. 268–280.

[31]Jockusch, Carl G. Jr. and Stephan, Frank, *A cohesive set which is not high*. Mathematical Logic Quarterly, vol. 39 (1993), pp. 515–530.

[32]Kaye, Richard, .

[33]Kirby, Laurie A. and Paris, Jeff B., .

[34]Kreisel, Georg, *Some reasons for generalizing recursion theory*. Logic Colloquium ’69 (Gandy, R. O. and Yates, C. E. M., editors), North–Holland Publishing Company, Amsterdam, 1971, pp. 139–198.

[35]Kummer, Martin, *An easy priority-free proof of a theorem of Friedberg*. Theoretical Computer Science, vol. 74 (1990), no. 2, pp. 249–251.

[36]Lachlan, Alistair H., *A recursively enumerable degree which will not split over all lesser ones*. Annals of Mathematical Logic, vol. 9 (1975), no. 4, pp. 307–365.

[37]Lachlan, Alistair H., *Bounding minimal pairs*. Journal of Symbolic Logic, vol. 44 (1979), no. 4, pp. 626–642.

[38]Lerman, Manuel, *On suborderings of the α-recursively enumerable α-degrees*. Annals of Mathematical Logic, vol. 4 (1972), pp. 369–392.

[39]Lerman, Manuel and Simpson, Stephen G., *Maximal sets in α-recursion theory*. Israel Journal of Mathematics, vol. 4 (1973), pp. 236–247.

[40]Lerman, Manuel, Solomon, Reed, and Towsner, Henry, *Separating principles below Ramsey’s Theorem for Pairs*. Journal of Mathematical Logic, vol. 13 (2013), no. 2, 1350007, 44 pp.

[41]Li, Wei, *Friedberg numbering in fragments of Peano arithmetic and α-recursion theory*. Journal of Symbolic Logic, vol. 78 (2013), no. 4, pp. 1135–1163.

[42]Li, Wei, .

[43]Liu, Jiayi, .

[44]Maass, Wolfgang A., *Recursively enumerable generic sets*. Journal of Symbolic Logic, vol. 47 (1982), no. 4, pp. 809–823.

[45]McAloon, Kenneth, *Completeness theorems, incompleteness theorems and models of arithmetic*. Transactions of the American Mathematical Society, vol. 239 (1978), pp. 253–277.

[46]Mourad, K. J., .

[47]Mytilinaios, Michael E., .

[48]Mytilinaios, Michael E., and Slaman, Theodore A., .

[49]Robinson, Abraham, .

[50]Sacks, Gerald E., Higher Recursion Theory, Perspectives in Logic, vol. 2, Springer–Verlag, Berlin, Heidelberg, 1990.

[51]Sacks, Gerald E. and Simpson, Stephen G., *The α-finite injury method*. Annals of Pure and Applied Logic, vol. 4 (1972), pp. 343–367.

[52]Seetapun, David and Slaman, Theodore A., *On the strength of Ramsey’s theorem*. Notre Dame Journal of Formal Logic, vol. 36 (1995), no. 4, pp. 570–582.

[53]Shore, Richard A., *Splitting an α-recursively enumerable set*. Transactions of the American Mathematical Society, vol. 204 (1975), pp. 65–78.

[54]Shore, Richard A., *On the jump of an α-recursively enumerable set*. Transactions of the American Mathematical Society, vol. 217 (1976), pp. 351–363.

[55]Shore, Richard A. and Slaman, Theodore A., *Working below a high recursively enumerable degree*. Journal of Symbolic Logic, vol. 58 (1993), no. 3, pp. 824–859.

[56]Simpson, Stephen G., Subsystems of Second Order Arithmetic, Perspectives in Logic, Springer–Verlag, Berlin, 1999.

[57]Skolem, Th., *Über die Nicht-charakterisierbarkeit der Zahlenreihe mittels endlich oder abzählbar unendlich vieler Aussagen mit ausschliesslich Zahlenvariablen*. Fundamenta Mathematicae, vol. 23 (1934), no. 1, pp. 150–161.

[58]Skolem, Th., *Peano axioms and models of arithmetic*. Mathematical Interpretations of Formal Systems (Skolem, Th., Hasenjaeger, G., Kreisel, G., Robinson, A., Wang, Hao, Henkin, L., and Łoś, J., editors), North–Holland Publishing Company, Amsterdam, 1955, pp. 1–14.

[59]Slaman, Theodore A., *The density of infima in the recursively enumerable degrees*. Annals of Pure and Applied Logic, vol. 52 (1991), no. 1–2, pp. 1–25.

[60]Slaman, Theodore A., .

[61]Slaman, Theodore A. and Hugh Woodin, W., .

[62]Yang, Yue, .