[1]Andersen, B., Kach, A., Melnikov, A., and Solomon, R., *Jump degrees of torsion-free abelian groups*. Journal of Symbolic Logic, vol. 77 (2012), no. 4, pp. 1067–1100.

[2]Ash, C., *Recursive labeling systems and stability of recursive structures in hyperarithmetical degrees*. Transactions of the American Mathematical Society, vol. 298 (1986), pp. 497–514.

[3]Ash, C., Jockusch, C., and Knight, J., *Jumps of orderings*. Transactions of the American Mathematical Society, vol. 319 (1990), no. 2, pp. 573–599.

[4]Ash, C. and Knight, J., Computable structures and the hyperarithmetical hierarchy, , vol. 144, North-Holland, Amsterdam, 2000.

[6]Baer, R., *Abelian groups without elements of finite order*. Duke Mathematical Journal, vol. 3 (1937), no. 1, pp. 68–122.

[7]Barker, E., *Back and forth relations for reduced abelian p-groups*. Annals of Pure and Applied Logic, vol. 75 (1995), no. 3, pp. 223–249.

[8]Baumslag, G., Dyer, E., and Miller, C. III*On the integral homology of finitely presented groups*. Topology, vol. 22 (1983), no. 1, pp. 27–46.

[9]Boone, W., *The word problem*. Annals of Mathematics, vol. 70 (1959), pp. 207–265.

[10]Braun, G. and Strüngmann, L., *Breaking up finite automata presentable torsion-free abelian groups*. International Journal of Algebra and Computation, vol. 21x(2011), no. 8, pp. 1463–1472.

[11]Lin, C., *The effective content of Ulm’s theorem*, Aspects of effective algebra (Clayton, 1979), Upside Down A Book, Yarra Glen, 1981, pp. 147–160.

[12]Lin, C., *Recursively presented abelian groups: Effective p-group theory. I*. Journal of Symbolic Logic, vol. 46 (1981), no. 3, pp. 617–624.

[13]Calvert, W., Algebraic structure and computable structure, ProQuest LLC, Ann Arbor, MI, 2005, Thesis (Ph.D.)–University of Notre Dame.

[14]Calvert, W., *The isomorphism problem for computable abelian p-groups of bounded length*. Journal of Symbolic Logic, vol. 70 (2005), no. 1, pp. 331–345.

[15]Calvert, W., Cenzer, D., Harizanov, V., and Morozov, A., *Effective categoricity of abelian p-groups*. Annals of Pure and Applied Logic, vol. 159 (2009), no. 1–2, pp. 187–197.

[16]Calvert, W., Harizanov, V., and Shlapentokh, A., *Turing degrees of isomorphism types of algebraic objects*. Journal of London Mathematical Society (2), vol. 75 (2007), no. 2, pp. 273–286.

[17]Calvert, W., Knight, J., and Millar, J., *Computable trees of Scott rank* $\omega _1^{CK} {\rm{,}}$*and computable approximation*. Journal of Symbolic Logic, vol. 71 (2006), no. 1, pp. 283–298. [18]Cenzer, D. and Remmel, J., *Feasibly categorical abelian groups*, Feasible mathematics, II (Ithaca, NY, 1992), Progress in Computer Science and Applied Logic, vol. 13, Birkhäuser Boston, Boston, MA, 1995, pp. 91–153.

[19]Coles, R., Downey, R., and Slaman, T., *Every set has a least jump enumeration*. Journal of London Mathematical Society (2), vol. 62 (2000), no. 3, pp. 641–649.

[20]Crossley, J. (EDITOR)Aspects of Effective Algebra, Upside Down A Book, Yarra Glen, 1981.

[21]Csima, B. and Solomon, R., *The complexity of central series in nilpotent computable groups*. Annals of Pure and Applied Logic, vol. 162 (2011), no. 8, pp. 667–678.

[22]Dekker, J., *Countable vector spaces with recursive operations. I*. Journal of Symbolic Logic, vol. 34 (1969), pp. 363–387.

[23]Dekker, J., *Countable vector spaces with recursive operations. II*. Journal of Symbolic Logic, vol. 36 (1971), pp. 477–493.

[24]Dobrica, V., *Constructivizable abelian groups*. Sibirskii Matematicheskii Zhurnal, vol. 22 (1981), no. 3, pp. 208–213, 239.

[25]Dobritsa, V., *Some constructivizations of abelian groups*. Siberian Journal of Mathematics, vol. 24 (1983), 167–173 (in Russian).

[26]Downey, R., *On presentations of algebraic structures*, Complexity, logic, and recursion theory, Lecture Notes in Pure and Applied Mathematics, vol. 187, Dekker, New York, 1997, pp. 157–205.

[27]Downey, R., *Computability, definability and algebraic structures*, Proceedings of the 7th and 8th Asian Logic Conferences, Singapore University Press, Singapore, 2003, pp. 63–102.

[28]Downey, R., Goncharov, S., Kach, A., Knight, J., Kudinov, O., Melnikov, A., and Turetsky, D., *Decidability and computability of certain torsion-free abelian groups*. Notre Dame Journal of Formal Logic, vol. 51 (2010), no. 1, pp. 85–96.

[29]Downey, R. and Hirschfeldt, D., Algorithmic Randomness and Complexity, Theory and Applications of Computability, Springer, New York, 2010.

[30]Downey, R., Hirschfeldt, D., Kach, A., Lempp, S., Mileti, J., and Montalbán, A.*Subspaces of computable vector spaces*. Journal of Algebra, vol. 314 (2007), no. 2, pp. 888–894.

[31]Downey, R. and Kurtz, S., *Recursion theory and ordered groups*. Annals of Pure and Applied Logic, vol. 32 (1986), no. 2, pp. 137–151.

[32]Downey, R. and Melnikov, A., *Computable completely decomposable groups*. Transactions of the American Mathematical Society, vol. 366 (2014), no. 8, pp. 4243–4266.

[33]Downey, R. and Melnikov, A., *Effectively categorical abelian groups*. Journal of Algebra, vol. 373 (2013), pp. 223–248.

[34]Downey, R., Melnikov, A., and Ng, K., .

[35]Downey, R., Melnikov, A., and Ng, K., *Iterated effective embeddings of abelian p-groups*. International Journal of Algebra and Computation, to appear.

[36]Downey, R. and Montalbán, A., *The isomorphism problem for torsion-free abelian groups is analytic complete*. Journal of Algebra, vol. 320 (2008), no. 6, pp. 2291–2300.

[37]Ershov, Y. and Goncharov, S., Constructive models, Siberian School of Algebra and Logic, Consultants Bureau, New York, 2000.

[38]Ershov, Yu., Problems of Solubility and Constructive Models [in Russian], Nauka, Moscow, 1980.

[39]Fokina, E., Friedman, S., Harizanov, V., Knight, J., McCoy, C., and Montalban, A., *Isomorphism and bi-embeddability relations on computable structures*. Journal of Symbolic Logic, vol. 77 (2012), pp. 122–132.

[40]Fokina, E., Knight, J., Melnikov, A., Quinn, S., and Safranski, C., *Classes of Ulm type and coding rank-homogeneous trees in other structures*. Journal of Symbolic Logic, vol. 76 (2011), no. 3, pp. 846–869.

[41]Fröhlich, A. and Shepherdson, J., *Effective procedures in field theory*. Philosophical Transactions of the Royal Society of London, Series A, vol. 248 (1956), pp. 407–432.

[42]Frolov, A., Kalimullin, I., Harizanov, V., Kudinov, O., and Miller, R., *Spectra of high* _{n}*and non-low* _{n}*degrees*. Journal of Logic and Computation, vol. 22 (2012), no. 4, pp. 755–777.

[43]Fuchs, L., Partially Ordered Algebraic Systems, Pergamon Press, Oxford, 1963.

[44]Fuchs, L., Infinite Abelian Groups. Vol. I, Pure and Applied Mathematics, Vol. 36, Academic Press, New York, 1970.

[45]Fuchs, L., Infinite Abelian Groups. Vol. II, Pure and Applied Mathematics, Vol. 36–II, Academic Press, New York, 1973.

[46]Goncharov, S., *Autostability of models and abelian groups*. Algebra i Logika, vol. 19 (1980), no. 1, pp. 23–44, 132.

[47]Goncharov, S., *The problem of the number of nonautoequivalent constructivizations*. Algebra i Logika, vol. 19 (1980), no. 6, pp. 621–639, 745.

[48]Goncharov, S., *Groups with a finite number of constructivizations*. Doklady Akademii Nauk SSSR, vol. 256 (1981), no. 2, pp. 269–272.

[49]Goncharov, S., , Siberian School of Algebra and Logic, Consultants Bureau, New York, 1997.

[50]Goncharov, S. and Knight, J., *Computable structure and antistructure theorems*. Algebra Logika, vol. 41 (2002), no. 6, pp. 639–681, 757.

[51]Goncharov, S., Lempp, S., and Solomon, R.. *The computable dimension of ordered abelian groups*, Advances in Mathematics, vol. 175 (2003), no. 1, pp. 102–143.

[52]Harris, K., *η-representation of sets and degrees*. Journal of Symbolic Logic, vol. 73 (2008), no. 4, pp. 1097–1121.

[53]Harrison, J., *Recursive pseudo-well-orderings*. Transactions of the American Mathematical Society, vol. 131 (1968), pp. 526–543.

[54]Hatzikiriakou, K. and Simpson, S., *WKL* _{0} and orderings of countable abelian groups, Logic and computation (Pittsburgh, PA, 1987), Contemporary Mathematics, vol. 106, American Mathematical Society, Providence, RI, 1990, pp. 177–180.

[55]Higman, G., *Subgroups of finitely presented groups*. Proceedings of the Royal Society, Series A, vol. 262 (1961), pp. 455–475.

[56]Hirschfeldt, D., Khoussainov, B., Shore, R., and Slinko, A., *Degree spectra and computable dimensions in algebraic structures*. Annals of Pure and Applied Logic, vol. 115 (2002), no. 1–3, pp. 71–113.

[57]Hisamiev, N., *Criterion for constructivizability of a direct sum of cyclic p-groups*. Izv. Akad. Nauk Kazakh. SSR Ser. Fiz.-Mat., (1981), no. 1, pp. 51–55, 86.

[58]Hjorth, G., *The isomorphism relation on countable torsion free abelian groups*. Fundamenta Mathematicae, vol. 175 (2002), no. 3, pp. 241–257.

[59]Kach, A., Lange, K., and Solomon, R., *Degrees of orders on torsion-free Abelian groups*. Annals of Pure and Applied Logic, vol. 164 (2013), no. 7–8, pp. 822–836.

[60]Kalimullin, I., Khoussainov, B., and Melnikov, A., *Limitwise monotonic sequences and degree spectra of structures*. Proceedings of the American Mathematical Society, vol. 141 (2013), no. 9, pp. 3275–3289.

[61]Kaplansky, A., Infinite abelian groups, Revised edition, The University of Michigan Press, Ann Arbor, MI, 1969.

[62]Khisamiev, A., *On the Ershov upper semilattice L* _{E}. Sibirskii Matematicheskii Zhurnal, vol. 45 (2004), no. 1, pp. 211–228.

[63]Khisamiev, N., *Strongly constructive abelian p-groups*. Algebra i Logika, vol. 22 (1983), no. 2, pp. 198–217.

[64]Khisamiev, N., *Hierarchies of torsion-free abelian groups*. Algebra i Logika, vol. 25 (1986), no. 2, pp. 205–226, 244.

[65]Khisamiev, N., *Constructive abelian p-groups*. Siberian Advances in Mathematics, vol. 2 (1992), no. 2, pp. 68–113.

[66]Khisamiev, N., *Constructive Abelian Groups, Vol. 2*, *Handbook of recursive mathematics, Studies in Logic and the Foundations of Mathematics*, vol. 139, North-Holland, Amsterdam, 1998, pp. 1177–1231.

[67]Khisamiev, N., *On a class of strongly decomposable abelian groups*. Algebra Logika, vol. 41 (2002), no. 4, pp. 493–509, 511–512.

[68]Khisamiev, N., *On constructive nilpotent groups*. Sibirskii Matematicheskii Zhurnal, vol. 48 (2007), no. 1, pp. 214–223.

[69]Khisamiev, N. and Khisamiev, Z., *Nonconstructivizability of the reduced part of a strongly constructive torsion-free abelian group*. Algebra i Logika, vol. 24 (1985), pp. 69–76.

[70]Khisamiev, N. and Krykpaeva, A., *Effectively completely decomposable abelian groups*. Sibirskii Matematicheskii Zhurnal, vol. 38 (1997), no. 6, pp. 1410–1412, iv.

[71]Khoussainov, B., Nies, A., and Shore, R., *Computable models of theories with few models*. Notre Dame Journal of Formal Logic, vol. 38 (1997), no. 2, pp. 165–178.

[72]Kokorin, A. and Kopytov, V., Fully ordered groups, Halsted Press [John Wiley & Sons], New York-Toronto, 1974, Translated from the Russian by D. Louvish.

[73]Kurosh, A., The Theory of Groups, Chelsea, New York, 1960, Translated from the Russian and edited by K. A. Hirsch. 2nd English ed. 2 volumes.

[74]Lempp, S., *The computational complexity of torsion-freeness of finitely presented groups*. Bulletin of the Australian Mathematical Society, vol. 56 (1997), no. 2, pp. 273–277.

[75]Levi, F., Abelsche gruppen mit abzhlbaren elementen, Habilitationsschrift, Leipzig, Teubner, 1917.

[76]Loth, Peter, *Classifications of abelian groups and Pontrjagin duality*, Algebra, Logic and Applications, vol. 10, Gordon and Breach Science Publishers, Amsterdam, 1998.

[77]Mader, A., *Almost completely decomposable groups*, Algebra, Logic and Applications, vol. 13, Gordon and Breach Science Publishers, Amsterdam, 2000.

[78]Malʹ cev, A., *Torsion-free abelian groups of finite rank*. Matematicheskii Sbornik, vol. 4 (1938), no. 2, pp. 45–68.

[79]Malʹ cev, A., *Constructive algebras. I*. Uspekhi Matematicheskikh Nauk, vol. 16 (1961), no. 3(99), pp. 3–60.

[80]Malʹ cev, A., *On recursive Abelian groups*. Doklady Akademii Nauk SSSR, vol. 146 (1962), pp. 1009–1012.

[81]Melnikov, A., *Effective properties of completely decomposable abelian groups*, CSc dissertation (2012).

[82]Melnikov, A., *Enumerations and completely decomposable torsion-free abelian groups*. Theory of Computing Systems, vol. 45 (2009), no. 4, pp. 897–916.

[83]Melnikov, A., *Transforming trees into abelian groups*. New Zealand Journal of Mathematics, vol. 41 (2011), pp. 75–81.

[84]Melnikov, A., Computability and Structure, The University of Auckland, 2012.

[85]Metakides, G. and Nerode, A., *Recursively enumerable vector spaces*, Annals of Mathematical Logic, vol. 11 (1977), no. 2, pp. 147–171.

[86]Metakides, G., *Effective content of field theory*. Annals of Mathematical Logic, vol. 17 (1979), no. 3, pp. 289–320.

[87]Miller, C. III*Decision problems for groups—survey and reflections*, Algorithms and classification in combinatorial group theory (Berkeley, CA, 1989), Mathematical Sciences Research Institute Publications, vol. 23, Springer, New York, 1992, pp. 1–59.

[88]Miller, R., ${\rm{\Delta }}_2^0$-, vol. 66 (2001), no. 2, pp. 470–486. [89]Novikov, P., *On the algorithmic unsolvability of the word problem in group theory*. Trudy Matematicheskogo Instituta imeni VA Steklova, vol. 44 (1955), pp. 1–143.

[90]Nurtazin, A., Computable classes and algebraic criteria of autostability, Summary of Scientific Schools, Mathematics Institute, SB USSRAS, Novosibirsk, 1974.

[91]Oates, S., Jump Degrees of Groups, ProQuest LLC, Ann Arbor, MI, 1989, .

[92]Odifreddi, P., *Classical Recursion Theory. Vol. II*, *Studies in Logic and the Foundations of Mathematics*, vol. 143, North-Holland, Amsterdam, 1999.

[93]Rabin, M., *Computable algebra, general theory and theory of computable fields*.Transactions of the American Mathematical Society, vol. 95 (1960), pp. 341–360.

[94]Richter, L., *Degrees of structures*. Journal of Symbolic Logic, vol. 46 (1981), no. 4, pp. 723–731.

[95]Riggs, K., *The decomposability problem for torsion-free abelian groups is analytic complete*. Proceedings of the American Mathematical Society, to appear.

[96]Rogers, H., Theory of Recursive Functions and Effective Computability, second edition, MIT Press, Cambridge, MA, 1987.

[97]Rogers, L., *Ulm’s theorem for partially ordered structures related to simply presented abelian p-groups*. Transactions of the American Mathematical Society, vol. 227 (1977), pp. 333–343.

[98]Shore, R., *Controlling the dependence degree of a recursively enumerable vector space*. Journal of Symbolic Logic, vol. 43 (1978), no. 1, pp. 13–22.

[99]Simpson, S., Subsystems of Second Order Arithmetic, second edition, Perspectives in Logic, Cambridge University Press, Cambridge, 2009.

[100]Slaman, T., *Relative to any nonrecursive set*. Proceedings of the American Mathematical Society, vol. 126 (1998), no. 7, pp. 2117–2122.

[101]Smith, R., *Two theorems on autostability in p-groups*, Logic Year 1979–80 (Proc. Seminars and Conf. Math. Logic, Univ. Connecticut, Storrs, Conn., 1979/80), Lecture Notes in Mathematics, vol. 859, Springer, Berlin, 1981, pp. 302–311.

[102]Soare, R., Recursively Enumerable Sets and Degrees, *A study of computable functions and computably generated sets*, Perspectives in Mathematical Logic, Springer-Verlag, Berlin, 1987.

[103]Solomon, R., ${\rm{\Pi }}_1^0$, vol. 115 (2002), no. 1–3, pp. 279–302. [104]Soskov, , *A jump inversion theorem for the enumeration jump*. Archive for Mathematical Logic, vol. 39 (2000), no. 6, pp. 417–437.

[105]Szmielew, W., *Elementary properties of Abelian groups*. Fundamenta Mathematicae, vol. 41 (1955), pp. 203–271.

[106]Thomas, S., *The classification problem for torsion-free abelian groups of finite rank*. Journal of American Mathematical Society, vol. 16 (2003), no. 1, pp. 233–258.

[107]Tsankov, T., *The additive group of the rationals does not have an automatic presentation*. Journal of Symbolic Logic, vol. 76 (2011), no. 4, pp. 1341–1351.

[108]van der Waerden, B., *Eine Bemerkung über die Unzerlebarkeit von Polynomen*. Mathematische Annalen, vol. 102 (1930), no. 1, pp. 738–739.

[109]Wehner, S., *Enumerations, countable structures and Turing degrees*. Proceedings of the American Mathematical Society, vol. 126 (1998), no. 7, pp. 2131–2139.