[1]
Boppana, R. B. and Sipser, M., The complexity of finite functions, Handbook of theoretical computer science (van Leeuwen, J., editor), Elsevier, 1990, pp. 757–804.

[2]
Christensen, J. P. R., Some results with relation to the control measure problem, Vector measures and applications, Springer Lecture Notes in Mathematics, no. 644, Springer-Verlag, Berlin, 1978, pp. 125–158.

[3]
Comfort, W. W. and Negrepontis, S., Theory of ultrafilters, Springer-Verlag, Berlin, 1974.

[4]
Dow, A. and Hart, K. P., *ω* has (almost) no continuous images*, preprint, 1997.

[5]
Dow, A., Simon, P., and Vaughan, J. E., Strong homology and the proper forcing axiom, Proceedings of the American Mathematical Society, vol. 106 (1989), no. 3, pp. 821–828.

[6]
Engelking, R., General topology, Heldermann, Berlin, 1989.

[7]
Erdös, P., My Scottish book “problems”, The Scottish book (Mauldin, D., editor), Birkhäuser, Boston, 1981, pp. 35–44.

[8]
Farah, I., Analytic ideals and their quotients, *
***Ph.D. thesis**
, University of Toronto, 1997.

[9]
Farah, I., *Analytic quotients*, submitted, 1997.

[10]
Farah, I., *Approximate homomorphisms*, submitted, 1997.

[11]
Hjorth, G. and Kechris, A., New dichotomies for Borel equivalence relations, this Bulletin, vol. 3 (1997), pp. 329–346.

[12]
Jalali-Naini, S.-A., The monotone subsets of Cantor space, filters and descriptive set theory, Doctoral dissertation, Oxford, 1976.

[13]
Just, W., Nowhere dense P-subsets of ω*, Proceedings of the American Mathematical Society, vol. 106 (1989), pp. 1145–1146.

[14]
Just, W., The space (ω*)^{n+1} is not always a continuous image of (ω*)^{n}
, Fundamenta Mathematicae, vol. 132 (1989), pp. 59–72.

[15]
Just, W., Repercussions on a problem of Erdős and Ulam about density ideals, Canadian Journal of Mathematics, vol. 42 (1990), pp. 902–914.

[16]
Just, W., A modification of Shelah's oracle chain condition with applications, Transactions of the American Mathematical Society, vol. 329 (1992), pp. 325–341.

[17]
Just, W., A weak version of AT from OCA, Mathematical Sciences Research Institute Publications (1992), no. 26, pp. 281–291.

[18]
Just, W. and Krawczyk, A., On certain Boolean algebras P(ω)/I, Transactions of the American Mathematical Society, vol. 285 (1984), pp. 411–429.

[19]
Kalton, N. J., The Maharam problem, Séminaire Initiation à ĺ Analyse, vol. 18 (1988–1989), pp. 1–13.

[20]
Kalton, N. J. and Roberts, J. W., Uniformly exhaustive submeasures andnearly additive set functions, Transactions of the American Mathematical Society, vol. 278 (1983), pp. 803–816.

[21]
Kechris, A. S., *Rigidity properties of Borel ideals on the integers, Topology and its Applications*, to appear.

[22]
Kechris, A. S. and Louveau, A., The structure of hypersmooth Borel equivalence relations, Journal of the American Mathematical Society, vol. 10, no. 1, pp. 215–242.

[23]
Kunen, K., *〈κ, λ*#x232A;-gaps under MA*, preprint, 1976.

[24]
Louveau, A., Progres recents sur le probleme de Maharam d'apres N. J. Kalton et J. W. Roberts, Séminaire Initiation à ĺ Analyse, vol. 20 (1983–1984), pp. 1–8.

[25]
Louveau, A. and Velickovic, B., A note on Borel equivalence relations, Proceedings of the American Mathematical Society, vol. 120 (1994), pp. 255–259.

[26]
Mardesic, S. and Prasolov, A., Strong homology is not additive, Transactions of the American Mathematical Society, vol. 307 (1988), pp. 725–744.

[27]
Mathias, A. R. D., A remark on rare filters, Infinite and finite sets (Hajnal, A.
et al., editors), Colloquia Mathematica Societatis János Bolyai, no. 10, North-Holland, 1975.

[28]
Maztjr, K., F_{σ}-ideals and ω_{1}ω_{1}*-gaps in the Boolean algebra P(ω)/I, Fundamenta Mathematicae, vol. 138 (1991), pp. 103–111.

[29]
Maztjr, K., *A modification of Louveau and Velickovic construction for F*_{σ} -ideals, preprint, 1996.

[30]
Parovičenko, I.I., A universal bicompact of weight ℵ_{1}
, Soviet Mathematics Doklady, vol. 4 (1963), pp. 592–592.

[31]
Rudin, W., Homogeneity problems in the theory of Čech compactifications, Duke Mathematics Journal, vol. 23 (1956), pp. 409–419.

[32]
Scheepers, M., Gaps in ω^{ω}
, Israel Mathematical Conference Proceedings, vol. 6 (1993), pp. 439–561.

[33]
Shelah, S., Proper forcing, Springer Lecture Notes in Mathematics, no. 940, Springer-Verlag, Berlin, 1982.

[34]
Shelah, S. and Steprans, J., PFA implies all automorphisms are trivial, Proceedings of the American Mathematical Society, vol. 104 (1988), pp. 1220–1225.

[35]
Solecki, S., Analytic ideals, this Bulletin, vol. 2 (1996), pp. 339–348.

[36]
Solovay, R., A model of set theory in which every set of reals is Lebesgue measurable, Annals of Mathematics, vol. 92 (1970), pp. 1–56.

[37]
Talagrand, M., Compacts de fonctions mesurables et filters nonmesurables, Studia Mathematica, vol. 67 (1980), pp. 13–43.

[38]
Todorcevic, S., *The first derived limit and compactly F*_{σ}-sets, Journal of the Mathematical Society of Japan, to appear.

[39]
Todorcevic, S., *Gaps in analytic quotients, Fundamenta Mathematicae*, to appear.

[40]
Todorcevic, S., Partition problems in topology, American Mathematical Society, Providence, Rhode Island, 1989.

[41]
Todorcevic, S., Analytic gaps, Fundamenta Mathematicae, vol. 150 (1996), pp. 55–66.

[42]
Todorcevic, S., *Definable ideals and gaps in their quotients*, preprint, 1997.

[43]
Ulam, S. M., Problems in modern mathematics, John Wiley & Sons, 1964.

[44]
Ulam, S. M. and Mauldin, D., Mathematical problems and games, Advances in Applied Mathematics, vol. 8 (1987), pp. 281–344.

[45]
van Douwen, E., Monk, D., and Rubin, M., Some questions about Boolean algebras, Algebra Universalis, vol. 11 (1980), pp. 220–243.

[46]
van Mill, J., An introduction to βω, Handbook of set-theoretic topology (Kunen, K. and Vaughan, J., editors), North-Holland, 1984, pp. 503–568.

[47]
Velickovic, B., Definable automorphisms of *P*(ω)/ Fin, Proceedings of the American Mathematical Society, vol. 96 (1986), pp. 130–135.

[48]
Velickovic, B., OCA and automorphisms of P(ω)/ Fin, Topology and its Applications, vol. 49 (1992), pp. 1–12.