Skip to main content Accessibility help
×
Home

Vitamin E supplementation is associated with lower levels of C-reactive protein only in higher dosages and combined with other antioxidants: The Cooperative Health Research in the Region of Augsburg (KORA) F4 study

  • Sigrid Schwab (a1), Astrid Zierer (a1), Andrea Schneider (a1), Margit Heier (a1), Wolfgang Koenig (a2), Gabi Kastenmüller (a3) (a4), Melanie Waldenberger (a1) (a5), Annette Peters (a1) and Barbara Thorand (a1)...

Abstract

The aim of the present study was to examine the association between intake of five common antioxidative nutrients from supplements and medications (vitamin E, vitamin C, carotenoids, Se, and Zn) and levels of high-sensitivity C-reactive protein (hs-CRP) in the general population. For this purpose, a total of 2924 participants of the population-based Cooperative Health Research in the Region of Augsburg (KORA) F4 study (2006–8) were investigated cross-sectionally. Intake of dietary supplements and medication during the last 7 d was recorded in a personal interview, when participants were asked to show product packages of ingested preparations. Linear regression models were calculated; first, the exposure to regular nutrient intake was treated with a binary response (yes/no); then regularly ingested amounts were divided into quartiles to examine dose–response relationships. Effect of single v. combined supplementation of antioxidants was assessed through the inclusion of interaction terms into the models. Regular intake of any of the five investigated antioxidants per se was not associated with hs-CRP levels. However, dose–response analyses revealed that participants who regularly ingested more than 78 mg vitamin E/d, which corresponds to the upper quartile, had 22 % lower hs-CRP levels (95 % CI 0·63, 0·97) compared to those of persons who were not exposed to any vitamin E supplementation. Stratified analyses showed that this association was found only in persons who took vitamin E in combination with other antioxidants. The combined supplementation of vitamin E with other antioxidants could thus be a promising strategy for the prevention of inflammation-related diseases in the general population, if further studies could confirm that the proposed association is causal.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Vitamin E supplementation is associated with lower levels of C-reactive protein only in higher dosages and combined with other antioxidants: The Cooperative Health Research in the Region of Augsburg (KORA) F4 study
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Vitamin E supplementation is associated with lower levels of C-reactive protein only in higher dosages and combined with other antioxidants: The Cooperative Health Research in the Region of Augsburg (KORA) F4 study
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Vitamin E supplementation is associated with lower levels of C-reactive protein only in higher dosages and combined with other antioxidants: The Cooperative Health Research in the Region of Augsburg (KORA) F4 study
      Available formats
      ×

Copyright

Corresponding author

* Corresponding author: PD Dr B. Thorand, fax +49 89 3187 3667, email thorand@helmholtz-muenchen.de

References

Hide All
1 Pearson, TA (2003) Markers of inflammation and cardiovascular disease: application to clinical and public health practice: a statement for healthcare professionals from the Centers for Disease Control and Prevention and the American Heart Association. Circulation 107, 499511.
2 Kolb, H & Mandrup-Poulsen, T (2005) An immune origin of type 2 diabetes? Diabetologia 48, 10381050.
3 Scheurig, AC, Thorand, B, Fischer, B, et al. (2008) Association between the intake of vitamins and trace elements from supplements and C-reactive protein: results of the MONICA/KORA Augsburg study. Eur J Clin Nutr 62, 127137.
4 Floegel, A, Chung, SJ, von Ruesten, A, et al. (2011) Antioxidant intake from diet and supplements and elevated serum C-reactive protein and plasma homocysteine concentrations in US adults: a cross-sectional study. Public Health Nutr 14, 20552064.
5 Bae, SC, Jung, WJ, Lee, EJ, et al. (2009) Effects of antioxidant supplements intervention on the level of plasma inflammatory molecules and disease severity of rheumatoid arthritis patients. J Am Coll Nutr 28, 5662.
6 Castillo, R, Rodrigo, R, Perez, F, et al. (2011) Antioxidant therapy reduces oxidative and inflammatory tissue damage in patients subjected to cardiac surgery with extracorporeal circulation. Basic Clin Pharmacol Toxicol 108, 256262.
7 Wood, LG, Garg, ML, Smart, JM, et al. (2012) Manipulating antioxidant intake in asthma: a randomized controlled trial. Am J Clin Nutr 96, 534543.
8 Daud, ZA, Tubie, B, Sheyman, M, et al. (2013) Vitamin E tocotrienol supplementation improves lipid profiles in chronic hemodialysis patients. Vasc Health Risk Manag 9, 747761.
9 Biniaz, V, Sadeghi Shermeh, M, Ebadi, A, et al. (2014) Effect of vitamin C supplementation on C-reactive protein levels in patients undergoing hemodialysis: a randomized, double blind, placebo-controlled study. Nephrourol Mon 6, e13351.
10 Hercberg, S, Galan, P, Preziosi, P, et al. (1998) Background and rationale behind the SU.VI.MAX Study, a prevention trial using nutritional doses of a combination of antioxidant vitamins and minerals to reduce cardiovascular diseases and cancers. SUpplementation en VItamines et Mineraux AntioXydants Study. Int J Vitam Nutr Res 68, 320.
11 Rathmann, W, Strassburger, K, Heier, M, et al. (2009) Incidence of type 2 diabetes in the elderly German population and the effect of clinical and lifestyle risk factors: KORA S4/F4 cohort study. Diabet Med 26, 12121219.
12 Mühlberger, N, Behrend, C, Stark, R, et al. (2003) [Database-supported identification and entry of drug data in health studies – experience with the IDOM software]. Inform Biomet Epidemiol Med Biol 34, 601611.
13 Schwab, S, Heier, M, Schneider, A, et al. (2014) The use of dietary supplements among older persons in southern Germany – results from the KORA-age study. J Nutr Health Aging 18, 510519.
14 Illig, T, Gieger, C, Zhai, G, et al. (2010) A genome-wide perspective of genetic variation in human metabolism. Nat Genet 42, 137141.
15 Dehaven, CD, Evans, AM, Dai, H, et al. (2010) Organization of GC/MS and LC/MS metabolomics data into chemical libraries. J Cheminform 2, 9.
16 Boudonck, K, Mitchell, M, Wulff, J, et al. (2009) Characterization of the biochemical variability of bovine milk using metabolomics. Metabolomics 5, 375386.
17 World Health Organization (2000) Obesity: Preventing and Managing the Global Epidemic. Report of a WHO Consultation. World Health Organization Technical Report Series no. 894, i-xii pp. 1253.
18 Meisinger, C, Lowel, H, Thorand, B, et al. (2005) Leisure time physical activity and the risk of type 2 diabetes in men and women from the general population. The MONICA/KORA Augsburg Cohort Study. Diabetologia 48, 2734.
19 Döring, A, Filipiak, B, Stieber, J, et al. (1993) Trends in alcohol intake in a southern German population from 1984–1985 to 1989–1990: results of the MONICA Project Augsburg. J Stud Alcohol 54, 745749.
20 World Health Organization, Rehm, J, Room, R, et al. (2004) Alcohol use. http://www.who.int/publications/cra/chapters/volume1/0959-1108.pdf.
22 World Health Organization, International Society of Hypertension (1999) 1999 World Health Organization–International Society of Hypertension Guidelines for the Management of Hypertension Guidelines Subcommittee. J Hypertens 17, 151183.
23 Morris, MS, Sakakeeny, L, Jacques, PF, et al. (2010) Vitamin B-6 intake is inversely related to, and the requirement is affected by, inflammation status. J Nutr 140, 103110.
24 Solini, A, Santini, E & Ferrannini, E (2006) Effect of short-term folic acid supplementation on insulin sensitivity and inflammatory markers in overweight subjects. Int J Obes (Lond) 30, 11971202.
25 Guerrero-Romero, F, Bermudez-Pena, C & Rodriguez-Moran, M (2011) Severe hypomagnesemia and low-grade inflammation in metabolic syndrome. Magnes Res 24, 4553.
26 Nielsen, FH, Johnson, LK & Zeng, H (2010) Magnesium supplementation improves indicators of low magnesium status and inflammatory stress in adults older than 51 years with poor quality sleep. Magnes Res 23, 158168.
27 Chacko, SA, Song, Y, Nathan, L, et al. (2010) Relations of dietary magnesium intake to biomarkers of inflammation and endothelial dysfunction in an ethnically diverse cohort of postmenopausal women. Diabetes Care 33, 304310.
28 Almoznino-Sarafian, D, Berman, S, Mor, A, et al. (2007) Magnesium and C-reactive protein in heart failure: an anti-inflammatory effect of magnesium administration? Eur J Nutr 46, 230237.
29 King, DE, AG, Mainous 3rd, Geesey, ME, et al. (2005) Dietary magnesium and C-reactive protein levels. J Am Coll Nutr 24, 166171.
30 Haynes, BM, Pfeiffer, CM, Sternberg, MR, et al. (2013) Selected physiologic variables are weakly to moderately associated with 29 biomarkers of diet and nutrition, NHANES 2003–2006. J Nutr 143, 1001S1010S.
31 Wang, C, Li, Y, Zhu, K, et al. (2009) Effects of supplementation with multivitamin and mineral on blood pressure and C-reactive protein in obese Chinese women with increased cardiovascular disease risk. Asia Pac J Clin Nutr 18, 121130.
32 Kantor, ED, Lampe, JW, Vaughan, TL, et al. (2012) Association between use of specialty dietary supplements and C-reactive protein concentrations. Am J Epidemiol 176, 10021013.
33 Simental-Mendia, LE, Rodriguez-Moran, M & Guerrero-Romero, F (2014) Oral magnesium supplementation decreases C-reactive protein levels in subjects with prediabetes and hypomagnesemia: a clinical randomized double-blind placebo-controlled trial. Arch Med Res 45, 325330.
34 Chen, N, Wan, Z, Han, SF, et al. (2014) Effect of vitamin D supplementation on the level of circulating high-sensitivity C-reactive protein: a meta-analysis of randomized controlled trials. Nutrients 6, 22062216.
35 Calder, PC, Albers, R, Antoine, JM, et al. (2009) Inflammatory disease processes and interactions with nutrition. Br J Nutr 101, Suppl. 1, S1S45.
36 Islam, KN, Devaraj, S & Jialal, I (1998) α-Tocopherol enrichment of monocytes decreases agonist-induced adhesion to human endothelial cells. Circulation 98, 22552261.
37 Mol, MJ, de Rijke, YB, Demacker, PN, et al. (1997) Plasma levels of lipid and cholesterol oxidation products and cytokines in diabetes mellitus and cigarette smoking: effects of vitamin E treatment. Atherosclerosis 129, 169176.
38 Devaraj, S & Jialal, I (1999) α-Tocopherol decreases interleukin-1 β release from activated human monocytes by inhibition of 5-lipoxygenase. Arterioscler Thromb Vasc Biol 19, 11251133.
39 Garcia-Bailo, B, El-Sohemy, A, Haddad, PS, et al. (2011) Vitamins D, C, and E in the prevention of type 2 diabetes mellitus: modulation of inflammation and oxidative stress. Biologics 5, 719.
40 Packer, JE, Slater, TF & Willson, RL (1979) Direct observation of a free radical interaction between vitamin E and vitamin C. Nature 278, 737738.
41 Nwose, EU, Jelinek, HF, Richards, RS, et al. (2008) The ‘vitamin E regeneration system’ (VERS) and an algorithm to justify antioxidant supplementation in diabetes – a hypothesis. Med Hypotheses 70, 10021008.
42 Wolf, G (2006) How an increased intake of α-tocopherol can suppress the bioavailability of γ-tocopherol. Nutr Rev 64, 295299.
43 van Herpen-Broekmans, WM, Klopping-Ketelaars, IA, Bots, ML, et al. (2004) Serum carotenoids and vitamins in relation to markers of endothelial function and inflammation. Eur J Epidemiol 19, 915921.
44 Cooney, RV, Franke, AA, Wilkens, LR, et al. (2008) Elevated plasma γ-tocopherol and decreased α-tocopherol in men are associated with inflammatory markers and decreased plasma 25-OH vitamin D. Nutr Cancer 60, Suppl. 1, 2129.
45 Block, G, Jensen, CD, Dalvi, TB, et al. (2009) Vitamin C treatment reduces elevated C-reactive protein. Free Radic Biol Med 46, 7077.
46 Kaul, N, Devaraj, S, Grundy, SM, et al. (2001) Failure to demonstrate a major anti-inflammatory effect with α-tocopherol supplementation (400 IU/day) in normal subjects. Am J Cardiol 87, 13201323.
47 Devaraj, S & Jialal, I (2000) α-Tocopherol supplementation decreases serum C-reactive protein and monocyte interleukin-6 levels in normal volunteers and type 2 diabetic patients. Free Radic Biol Med 29, 790792.
48 Church, TS, Earnest, CP, Wood, KA, et al. (2003) Reduction of C-reactive protein levels through use of a multivitamin. Am J Med 115, 702707.
49 Bruunsgaard, H, Poulsen, HE, Pedersen, BK, et al. (2003) Long-term combined supplementations with α-tocopherol and vitamin C have no detectable anti-inflammatory effects in healthy men. J Nutr 133, 11701173.
50 O'Doherty, MG, Gilchrist, SE, Young, IS, et al. (2010) Effect of supplementation with B vitamins and antioxidants on levels of asymmetric dimethylarginine (ADMA) and C-reactive protein (CRP): a double-blind, randomised, factorial design, placebo-controlled trial. Eur J Nutr 49, 483492.
51 German Nutrition Society, Austrian Nutrition Society, Swiss Nutrition Society, et al. (2000) [The Reference Values for Nutrient Intake], 1st ed. Frankfurt am Main: Umschau Braus.
52 European Food Safety Authority (2006) Tolerable Upper Intake Levels for Vitamins and Minerals. Scientific Committee on Food, Scientific Panel on Dietetic Products, Nutrition and Allergies. http://www.efsa.europa.eu/en/ndatopics/docs/ndatolerableuil.pdf (accessed accessed 28 July 2014).
53 Miller, ER 3rd, Pastor-Barriuso, R, Dalal, D, et al. (2005) Meta-analysis: high-dosage vitamin E supplementation may increase all-cause mortality. Ann Intern Med 142, 3746.
54 Bjelakovic, G, Nikolova, D & Gluud, C (2013) Meta-regression analyses, meta-analyses, and trial sequential analyses of the effects of supplementation with β-carotene, vitamin A, and vitamin E singly or in different combinations on all-cause mortality: do we have evidence for lack of harm? PLOS ONE 8, e74558.
55 Hathcock, JN, Azzi, A, Blumberg, J, et al. (2005) Vitamins E and C are safe across a broad range of intakes. Am J Clin Nutr 81, 736745.
56 Bjelakovic, G, Nikolova, D & Gluud, C (2014) Antioxidant supplements and mortality. Curr Opin Clin Nutr Metab Care 17, 4044.
57 Zacho, J, Tybjaerg-Hansen, A, Jensen, JS, et al. (2008) Genetically elevated C-reactive protein and ischemic vascular disease. N Engl J Med 359, 18971908.
58 Wang, MX, Jiao, JH, Li, ZY, et al. (2013) Lutein supplementation reduces plasma lipid peroxidation and C-reactive protein in healthy nonsmokers. Atherosclerosis 227, 380385.
59 Ong, KL, Allison, MA, Cheung, BM, et al. (2013) Trends in C-reactive protein levels in US adults from 1999 to 2010. Am J Epidemiol 177, 14301442.

Keywords

Type Description Title
WORD
Supplementary materials

Schwab supplementary material
Table S1

 Word (42 KB)
42 KB

Vitamin E supplementation is associated with lower levels of C-reactive protein only in higher dosages and combined with other antioxidants: The Cooperative Health Research in the Region of Augsburg (KORA) F4 study

  • Sigrid Schwab (a1), Astrid Zierer (a1), Andrea Schneider (a1), Margit Heier (a1), Wolfgang Koenig (a2), Gabi Kastenmüller (a3) (a4), Melanie Waldenberger (a1) (a5), Annette Peters (a1) and Barbara Thorand (a1)...

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed