Skip to main content Accessibility help
×
Home

Vitamin D status is associated with cardiometabolic markers in 8–11-year-old children, independently of body fat and physical activity

  • Rikke A. Petersen (a1) (a2), Stine-Mathilde Dalskov (a1), Louise B. Sørensen (a1), Mads F. Hjorth (a1), Rikke Andersen (a3), Inge Tetens (a3), Henrik Krarup (a4), Christian Ritz (a1), Arne Astrup (a1), Kim F. Michaelsen (a1), Christian Mølgaard (a1) and Camilla T. Damsgaard (a1)...

Abstract

Vitamin D status has been associated with cardiometabolic markers even in children, but the associations may be confounded by fat mass and physical activity behaviour. This study investigated associations between vitamin D status and cardiometabolic risk profile, as well as the impact of fat mass and physical activity in Danish 8–11-year-old children, using baseline data from 782 children participating in the Optimal well-being, development and health for Danish children through a healthy New Nordic Diet (OPUS) School Meal Study. We assessed vitamin D status as serum 25-hydroxyvitamin D (25(OH)D) and measured blood pressure, fasting plasma glucose, homoeostasis model of assessment-insulin resistance, plasma lipids, inflammatory markers, anthropometry and fat mass by dual-energy X-ray absorptiometry, and physical activity by 7 d accelerometry during August–November. Mean serum 25(OH)D was 60·8 (sd 18·7) nmol/l. Each 10 mmol/l 25(OH)D increase was associated with lower diastolic blood pressure (−0·3 mmHg, 95 % CI −0·6, −0·0) (P=0·02), total cholesterol (−0·07 mmol/l, 95 % CI −0·10, −0·05), LDL-cholesterol (−0·05 mmol/l, 95 % CI −0·08, −0·03), TAG (−0·02 mmol/l, 95 % CI −0·03, −0·01) (P≤0·001 for all lipids) and lower metabolic syndrome (MetS) score (P=0·01). Adjustment for fat mass index did not change the associations, but the association with blood pressure became borderline significant after adjustment for physical activity (P=0·06). In conclusion, vitamin D status was negatively associated with blood pressure, plasma lipids and a MetS score in Danish school children with low prevalence of vitamin D deficiency, and apart from blood pressure the associations were independent of body fat and physical activity. The potential underlying cause–effect relationship and possible long-term implications should be investigated in randomised controlled trials.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Vitamin D status is associated with cardiometabolic markers in 8–11-year-old children, independently of body fat and physical activity
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Vitamin D status is associated with cardiometabolic markers in 8–11-year-old children, independently of body fat and physical activity
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Vitamin D status is associated with cardiometabolic markers in 8–11-year-old children, independently of body fat and physical activity
      Available formats
      ×

Copyright

Corresponding author

* Corresponding author: Professor C. T. Damsgaard, fax 45 3533 2483, email ctd@nexs.ku.dk

References

Hide All
1. Holick, MF (2004) Sunlight and vitamin D for bone health and prevention of autoimmune diseases, cancers, and cardiovascular disease. Am J Clin Nutr 80, 1678S1688S.
2. Bouillon, R, Van Cromphaut, S & Carmeliet, G (2003) Intestinal calcium absorption: molecular vitamin D mediated mechanisms. J Cell Biochem 88, 332339.
3. Christakos, S (2011) Mechanism of action of 1,25-dihydroxyvitamin D(3) on intestinal calcium absorption. Rev Endocr Metab Disord 347, 2529.
4. Wharton, B & Bishop, N (2003) Rickets. Lancet 362, 13891400.
5. Dolinsky, DH, Armstrong, S, Mangarelli, C, et al. (2013) The association between vitamin D and cardiometabolic risk factors in children: a systematic review. Clin Pediatr 52, 210223.
6. Li, YC (2003) Vitamin D regulation of the renin-angiotensin system. J Cell Biochem 88, 327331.
7. Wolden-Kirk, H, Overbergh, L, Christesen, HT, et al. (2011) Vitamin D and diabetes: its importance for beta cell and immune function. Mol Cell Endocrinol 347, 106120.
8. Wolden-Kirk, H, Rondas, D, Bugliani, M, et al. (2014) Discovery of molecular pathways mediating 1,25-dihydroxyvitamin D protection against cytokine-induced inflammation and damage of human and male mouse islets of Langerhans. Endocrinology 155, 736747.
9. Querfeld, U (2013) Vitamin D and inflammation. Pediatr Nephrol 28, 605610.
10. Marcotorchino, J, Gouranton, E, Romier, B, et al. (2012) Vitamin D reduces the inflammatory response and restores glucose uptake in adipocytes. Mol Nutr Food Res 56, 17711782.
11. Alemzadeh, R & Kichler, J (2012) Parathyroid hormone is associated with biomarkers of insulin resistance and inflammation, independent of vitamin D status, in obese adolescents. Metab Syndr Relat Disord 10, 422429.
12. Gilardini, L, Pasqualinotto, L, Di Matteo, S, et al. (2011) Factors associated with early atherosclerosis and arterial calcifications in young subjects with a benign phenotype of obesity. Obesity 19, 16841689.
13. Zimmet, P, Alberti, KG, Kaufman, F, et al. (2007) The metabolic syndrome in children and adolescents – an IDF consensus report. Pediatr Diabetes 8, 299306.
14. Nadeau, KJ, Maahs, DM, Daniels, SR, et al. (2011) Childhood obesity and cardiovascular disease: links and prevention strategies. Nat Rev Cardiol 8, 513525.
15. Saneei, P, Salehi-Abargouei, A & Esmaillzadeh, A (2013) Serum 25-hydroxy vitamin D levels in relation to body mass index: a systematic review and meta-analysis. Obes Rev 14, 393404.
16. Pacifico, L, Anania, C, Osborn, JF, et al. (2011) Low 25(OH)D3 levels are associated with total adiposity, metabolic syndrome, and hypertension in Caucasian children and adolescents. Eur J Endocrinol 165, 603611.
17. Lagunova, Z, Porojnicu, AC, Lindberg, FA, et al. (2011) Vitamin D status in Norwegian children and adolescents with excess body weight. Pediatric diabetes 12, 120126.
18. Alemzadeh, R, Kichler, J, Babar, G, et al. (2008) Hypovitaminosis D in obese children and adolescents: relationship with adiposity, insulin sensitivity, ethnicity, and season. Metabolism 57, 183191.
19. Olson, ML, Maalouf, NM, Oden, JD, et al. (2012) Vitamin D deficiency in obese children and its relationship to glucose homeostasis. J Clin Endocrinol Metab 97, 279285.
20. Kumar, J, Muntner, P, Kaskel, FJ, et al. (2009) Prevalence and associations of 25-hydroxyvitamin D deficiency in US children: NHANES 2001–2004. Pediatrics 124, e362e370.
21. Rodriguez-Rodriguez, E, Navia-Lomban, B, Lopez-Sobaler, AM, et al. (2010) Associations between abdominal fat and body mass index on vitamin D status in a group of Spanish schoolchildren. Eur J Clin Nutr 64, 461467.
22. Codoner-Franch, P, Tavarez-Alonso, S, Simo-Jorda, R, et al. (2012) Vitamin D status is linked to biomarkers of oxidative stress, inflammation, and endothelial activation in obese children. J Pediatr 161, 848854.
23. Aypak, C, Turedi, O & Yuce, A (2013) The association of vitamin D status with cardiometabolic risk factors, obesity and puberty in children. Eur J Pediatr 173, 367373.
24. Sacheck, J, Goodman, E, Chui, K, et al. (2011) Vitamin D deficiency, adiposity, and cardiometabolic risk in urban schoolchildren. J Pediatr 159, 945950.
25. Earthman, CP, Beckman, LM, Masodkar, K, et al. (2012) The link between obesity and low circulating 25-hydroxyvitamin D concentrations: considerations and implications. Int J Obes 36, 387396.
26. Ekelund, U, Luan, J, Sherar, LB, et al. (2012) Moderate to vigorous physical activity and sedentary time and cardiometabolic risk factors in children and adolescents. JAMA 307, 704712.
27. Ha, CD, Cho, JK, Lee, SH, et al. (2013) Serum vitamin D, physical activity, and metabolic risk factors in Korean children. Med Sci Sports Exerc 45, 102108.
28. Damsgaard, CT, Dalskov, SM, Petersen, RA, et al. (2012) Design of the OPUS School Meal Study: a randomised controlled trial assessing the impact of serving school meals based on the New Nordic Diet. Scand J Public Health 40, 693703.
29. Statistics Denmark (2012) Indvandrere i Danmark (Immigrants in Denmark). Copenhagen: Rosendahls – Schultz Grafisk A/S. http://www.dst.dk/pukora/epub/upload/16601/indv.pdf (accessed July 2015).
30. Morris, N & Udry, JR (1980) Validation of a self-administered instrument to assess stage of adolescent development. J Youth Adolesc 9, 271280.
31. Biltoft-Jensen, A, Trolle, E, Christensen, T, et al. (2014) WebDASC: a web-based dietary assessment software for 8–11-year-old Danish children. J Hum Nutr Diet 27, Suppl. 1, 4353.
32. Biltoft-Jensen, A, Hjorth, MF, Trolle, E, et al. (2013) Comparison of estimated energy intake using web-based dietary assessment software with accelerometer-determined energy expenditure in children. Food Nutr Res 57 (epublication 17 December 2013).
33. Henry, CJ (2005) Basal metabolic rate studies in humans: measurement and development of new equations. Public Health Nutr 8, 11331152.
34. Black, AE (2000) The sensitivity and specificity of the Goldberg cut-off for EI:BMR for identifying diet reports of poor validity. Eur J Clin Nutr 54, 395404.
35. Hjorth, MF, Chaput, JP, Michaelsen, K, et al. (2013) Seasonal variation in objectively measured physical activity, sedentary time, cardio-respiratory fitness and sleep duration among 8–11 year-old Danish children: a repeated-measures study. BMC Public Health 13, 808.
36. Trost, SG, Loprinzi, PD, Moore, R, et al. (2011) Comparison of accelerometer cut points for predicting activity intensity in youth. Med Sci Sports Exerc 43, 13601368.
37. Damsgaard, CT, Dalskov, SM, Laursen, RP, et al. (2014) Provision of healthy school meals does not affect the metabolic syndrome score in 8–11-year-old children, but reduces cardiometabolic risk markers despite increasing waist circumference. Br J Nutr 112, 18261836.
38. World Health Organization (2012) WHO anthroplus macros for STATA. http://www.who.int/growthref/tools/en/ (accessed September 2013).
39. Cole, TJ, Flegal, KM, Nicholls, D, et al. (2007) Body mass index cut offs to define thinness in children and adolescents: international survey. BMJ 335, 194.
40. Cole, TJ, Bellizzi, MC, Flegal, KM, et al. (2000) Establishing a standard definition for child overweight and obesity worldwide: international survey. BMJ 320, 12401243.
41. Friedewald, WT, Levy, RI & Fredrickson, DS (1972) Estimation of the concentration of low-density lipoprotein cholesterol in plasma, without use of the preparative ultracentrifuge. Clin Chem 18, 6, 499502.
42. Cutfield, WS, Jefferies, CA, Jackson, WE, et al. (2003) Evaluation of HOMA and QUICKI as measures of insulin sensitivity in prepubertal children. Pediatr Diabetes 4, 119125.
43. Carter, GD, Berry, JL, Gunter, E, et al. (2010) Proficiency testing of 25-hydroxyvitamin D (25-OHD) assays. J Steroid Biochem Mol Biol 121, 176179.
44. Braegger, C, Campoy, C, Colomb, V, et al. (2013) Vitamin D in the Healthy European Paediatric Population. J Pediatr Gastroenterol Nutr 56, 692701.
45. Damsgaard, CT, Eidner, MB, Stark, KD, et al. (2014) Eicosapentaenoic acid and docosahexaenoic acid in whole blood are differentially and sex-specifically associated with cardiometabolic risk markers in 8–11-year-old Danish children. PLOS ONE 9, e109368.
46. Gobel, RJ, Jensen, SM, Frokiaer, H, et al. (2012) Obesity, inflammation and metabolic syndrome in Danish adolescents. Acta Paediatr 101, 192200.
47. Wohlfahrt-Veje, C, Tinggaard, J, Winther, K, et al. (2014) Body fat throughout childhood in 2647 healthy Danish children: agreement of BMI, waist circumference, skinfolds with dual X-ray absorptiometry. Eur J Clin Nutr 68, 664670.
48. Tresaco, B, Bueno, G, Pineda, I, et al. (2005) Homeostatic model assessment (HOMA) index cut-off values to identify the metabolic syndrome in children. J Physiol Biochem 61, 381388.
49. National Heart, Lung, and Blood Institute (2012) Expert Panel on Integrated Guidelines for Cardiovascular Health and Risk Reduction in Children and Adolescents Full Report no. NIH Publication No. 12-7486. Bethesda, MD: US Department of Health and Human Services, National Institutes of Health.
50. Delvin, EE, Lambert, M, Levy, E, et al. (2010) Vitamin D status is modestly associated with glycemia and indicators of lipid metabolism in French-Canadian children and adolescents. J Nutr 140, 987991.
51. Rodriguez-Rodriguez, E, Ortega, RM, Gonzalez-Rodriguez, LG, et al. (2011) Vitamin D deficiency is an independent predictor of elevated triglycerides in Spanish school children. Eur J Nutr 50, 373378.
52. Williams, DM, Fraser, A, Sayers, A, et al. (2012) Associations of 25-hydroxyvitamin D2 and D3 with cardiovascular risk factors in childhood: cross-sectional findings from the Avon Longitudinal Study of Parents and Children. J Clin Endocrinol Metab 97, 15631571.
53. Dong, Y, Stallmann-Jorgensen, IS, Pollock, NK, et al. (2010) A 16-week randomized clinical trial of 2000 international units daily vitamin D3 supplementation in black youth: 25-hydroxyvitamin D, adiposity, and arterial stiffness. J Clin Endocrinol Metab 95, 45844591.
54. Aguirre Castaneda, R, Nader, N, Weaver, A, et al. (2012) Response to vitamin D3 supplementation in obese and non-obese Caucasian adolescents. Horm Res Paediatr 78, 226231.
55. Querfeld, U, Hoffmann, MM, Klaus, G, et al. (1999) Antagonistic effects of vitamin D and parathyroid hormone on lipoprotein lipase in cultured adipocytes. J Am Soc Nephrol 10, 21582164.
56. Hirschler, V, Maccallini, G, Sanchez, MS, et al. (2013) Improvement in high-density lipoprotein cholesterol levels in argentine Indian school children after vitamin D supplementation. Horm Res Paediatr 80, 335342.
57. Vaidya, A & Forman, JP (2010) Vitamin D and hypertension: current evidence and future directions. Hypertension 56, 774779.
58. Talmor, Y, Golan, E, Benchetrit, S, et al. (2008) Calcitriol blunts the deleterious impact of advanced glycation end products on endothelial cells. Am J Physiol Renal Physiol 294, F1059F1064.
59. Witham, MD, Nadir, MA & Struthers, AD (2009) Effect of vitamin D on blood pressure: a systematic review and meta-analysis. J Hypertens 27, 19481954.
60. Nielsen, G, Taylor, R, Williams, S, et al. (2010) Permanent play facilities in school playgrounds as a determinant of children’s activity. J Phys Act Health 7, 490496.
61. Nilsson, A, Andersen, LB, Ommundsen, Y, et al. (2009) Correlates of objectively assessed physical activity and sedentary time in children: a cross-sectional study (The European Youth Heart Study). BMC Public Health 9, 322.
62. Morin, P, Turcotte, S & Perreault, G (2013) Relationship between eating behaviors and physical activity among primary and secondary school students: results of a cross-sectional study. J Sch Health 83, 597604.
63. Ottevaere, C, Huybrechts, I, Beghin, L, et al. (2011) Relationship between self-reported dietary intake and physical activity levels among adolescents: the HELENA study. I Int J Behav Nutr Phys Act 8, 8.
64. Andersen, R, Brot, C, Jakobsen, J, et al. (2013) Seasonal changes in vitamin D status among Danish adolescent girls and elderly women: the influence of sun exposure and vitamin D intake. Eur J Clin Nutr 67, 270274.
65. Juhola, J, Magnussen, CG, Viikari, JS, et al. (2011) Tracking of serum lipid levels, blood pressure, and body mass index from childhood to adulthood: the Cardiovascular Risk in Young Finns Study. J Pediatr 159, 584590.
66. Morrison, JA, Friedman, LA, Wang, P, et al. (2008) Metabolic syndrome in childhood predicts adult metabolic syndrome and type 2 diabetes mellitus 25 to 30 years later. J Pediatr 152, 201206.

Keywords

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed