Skip to main content Accessibility help
×
Home

Vitamin D deficiency, oxidative stress and antioxidant status: only weak association seen in the absence of advanced age, obesity or pre-existing disease

  • Erica W. Wang (a1), Parco M. Siu (a1), Marco Y. Pang (a2), Jean Woo (a3), Andrew R. Collins (a4) and Iris F. F. Benzie (a1)...

Abstract

Vitamin D deficiency (plasma 25-hydroxycholecalciferol (25(OH)D)<50 nmol/l) is highly prevalent, increases risk of non-communicable diseases (NCD) and associates with increased oxidative stress in obese subjects, the elderly and patients suffering from NCD. If confirmed as an independent driver of oxidative stress, nutritional and other public health strategies to improve vitamin D status would be strongly supported. We investigated vitamin D/oxidative stress links without the confounding effects of advanced age, obesity, smoking or pre-existing disease. Plasma 25(OH)D and biomarkers of oxidative stress and antioxidant status (plasma allantoin, oxidised LDL, ferric reducing antioxidant power (FRAP), ascorbic acid, urine 8-oxo-7,8-dihydro-2'-deoxyguanosine) were measured in fasting samples from 196 consenting, healthy adults aged 18–26 years. Correlation between 25(OH)D and each biomarker as well as biomarker differences across 25(OH)D quartiles and groups (<25/25–49/≥50 nmol/l) were investigated. Median 25(OH)D was 40 nmol/l; >70 % of participants were vitamin D deficient. No significant correlations and no biomarker differences across 25(OH)D quartiles or groups were seen except for total antioxidant status. A weak direct association (r 0·252, P<0·05) was observed between 25(OH)D and FRAP, and those in the lowest 25(OH)D quartile and group had significantly lower FRAP values. Results did not reveal a clear link between vitamin D status and oxidative stress biomarkers in the absence of advanced age, obesity and disease, though some evidence of depleted antioxidant status in those with vitamin D deficiency was seen. Poor antioxidant status may pre-date increased oxidative stress. Study of effects of correction of deficiency on antioxidant status and oxidative stress in vitamin D-deficient but otherwise healthy subjects is needed.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Vitamin D deficiency, oxidative stress and antioxidant status: only weak association seen in the absence of advanced age, obesity or pre-existing disease
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Vitamin D deficiency, oxidative stress and antioxidant status: only weak association seen in the absence of advanced age, obesity or pre-existing disease
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Vitamin D deficiency, oxidative stress and antioxidant status: only weak association seen in the absence of advanced age, obesity or pre-existing disease
      Available formats
      ×

Copyright

Corresponding author

* Corresponding author: I. F. F. Benzie, fax +852 2362 4365, email htbenzie@polyu.edu.hk

References

Hide All
1. World Health Organization (2013) Global Action Plan for the Prevention and Control of Noncommunicable Diseases 2013-2020. Geneva: WHO.
2. Camps, J & García-Heredia, A (2014) Introduction: oxidation and inflammation, a molecular link between non-communicable diseases. Adv Exp Med Biol 824, 14.
3. Rani, V, Deep, G, Singh, RK, et al. (2016) Oxidative stress and metabolic disorders: pathogenesis and therapeutic strategies. Life Sci 148, 183193.
4. Halliwell, B & Gutteridge, JMC (2007) Free Radicals in Biology and Medicine, 4th ed. Oxford: Oxford University Press.
5. Global Health (2013) Investing in Our Future: Non-Communicable Disease. Washington, DC: Global Health. http://www.globalhealth.org/wp-content/uploads/GlobalHealthBriefingBook_FINAL_web.pdf
6. Christakos, S, Dhawan, P, Verstuyf, A, et al. (2016) Vitamin D: metabolism, molecular mechanism of action, and pleiotropic effects. Physiol Rev 96, 365408.
7. Schottker, B, Haug, U, Schomburg, L, et al. (2013) Strong association of hydroxyvitamin D concentrations with all-cause, cardiovascular, cancer and respiratory disease mortality in a large cohort study. Am J Clin Nutr 97, 782793.
8. Hilger, J, Friedel, A, Herr, R, et al. (2014) A systematic review of vitamin D status in populations worldwide. Br J Nutr 111, 2345.
9. Wang, EW, Pang, MYC, Siu, PPM, et al. (2016) Vitamin D status and cardiometabolic risk factors in young adults in Hong Kong: associations and implications. APJCN (Epublication ahead of print version).
10. Skaaby, T (2015) The relationship of vitamin D status to risk of cardiovascular disease and mortality. Dan Med J 62, pii B5008.
11. Mitri, J, Muraru, MD & Pittas, AG (2011) Vitamin D and type 2 diabetes: a systematic review. Eur J Clin Nutr 65, 10051015.
12. Norman, PE & Powell, JT (2015) Vitamin D and cardiovascular disease. Circ Res 114, 379393.
13. Welsh, P, Doolin, O, McConnachie, A, et al. (2012) Circulating 25OHD, dietary vitamin D, PTH, and calcium associations with incident cardiovascular disease and mortality: the MIDSPAN Family Study. J Clin Endocrinol Metab 97, 45784587.
14. Pilz, S, Verheyen, N, Grübler, MR, et al. (2016) Vitamin D and cardiovascular disease prevention. Nat Rev Cardiol 13, 404417.
15. Virtanen, JK, Nurmi, T, Voutilainen, S, et al. (2011) Association of serum 25-hydroxvitamin D with the risk of death in a general older population in Finland. Eur J Nutr 50, 305312.
16. Jenab, M, Bueno-de-Mesquita, HB, Ferrari, P, et al. (2010) Association between pre-diagnostic circulating vitamin D concentration and risk of colorectal cancer in European populations: a nested case-control study. BMJ 340, b5500.
17. Lim, S, Kim, MJ, Choi, SH, et al. (2013) Association of vitamin D deficiency with incidence of type 2 diabetes in high-risk Asian subjects. Am J Clin Nutr 97, 524530.
18. Gagnon, C, Lu, ZX & Magliano, DJ (2011) Serum 25-hydroxyvitamin D, calcium intake, and risk of type 2 diabetes after 5 years: results from a national population-based prospective study (the Australian Diabetes, Obesity and Lifestyle study). Diabetes Care 34, 11331138.
19. Norman, PE & Powell, JT (2014) Vitamin D and cardiovascular disease. Circ Res 114, 379393.
20. Palacios, C & Gonzalez, L (2014) Is vitamin D deficiency a major public health problem? J Steroid Biochem Mol Biol 144, 138145.
21. Balvers, MGJ, Brouwer-Brolsma, EM, Enderberg, S, et al. (2015) Recommended intakes of vitamin D to optimise health, associated 25-hydroxyvitamin D concentrations, and dosing regimens to treat deficiency: workshop report and overview of current literature. J Nutr Sci 4, e23.
22. Battault, S, Whiting, SJ, Peltier, SL, et al. (2013) Vitamin D metabolism, functions and needs: from science to health claims. Eur J Nutr 52, 429441.
23. Autier, P, Boniol, M, Pizot, C, et al. (2014) Vitamin D status and ill health: a systematic review. Lancet Diabetes Endocrinol 2, 7689.
24. Heaney, RP & Holick, MF (2011) Why the IOM recommendations for vitamin D are deficient. J Bone Mineral Res 26, 455457.
25. Vieth, R (2011) Why the minimum desirable serum 25-hydroxyvitamin D level should be 75 nmol/l (30 ng/ml). Best Prac Res Clin Endocrinol Metab 25, 681691.
26. Spedding, S, Vanlint, S, Morris, H, et al. (2013) Does vitamin D sufficiency equate to a single serum 25-hydroxyvitamin D level or are different levels required for non-skeletal diseases? Nutrients 5, 51275139.
27. Farrell, CJ, Martin, S, McWhinney, B, et al. (2012) State-of-the-art vitamin D assays: a comparison of automated immunoassays with liquid chromatography-tandem mass spectrometry methods. Clin Chem 58, 531542.
28. Nikooyeh, B & Neyestani, TR (2016) Oxidative stress, type 2 diabetes and vitamin D: past, present and future. Diabetes Metab Res Rev 32, 260267.
29. Peng, X, Vaishnav, A, Murillo, G, et al. (2010) Protection against cellular stress by 25-hydroxy D3 in breast epithelial cells. J Cell Biochem 110, 13241333.
30. Uberti, F, Lattuada, D, Morsanuto, V, et al. (2014) Vitamin D protects human endothelial cells from oxidative stress through the autophagic and survival pathways. J Clin Endocrinol Metab 99, 13671374.
31. Tohari, AM, Zhou, X & Shu, X (2016) Protection against oxidative stress by vitamin D in cone cells. Cell Biochem Funct 34, 8294.
32. George, N, Kumar, TP, Antony, S, et al. (2012) Effect of vitamin D3 in reducing metabolic and oxidative stress in the liver of streptozotocin-induced diabetic rats. Br J Nutr 108, 14101418.
33. Codoñer-Franch, P, Tavárez-Alonso, S, Simó-Jordá, R, et al. (2012) Vitamin D status is linked to biomarkers of oxidative stress, inflammation, and endothelial activation in obese children. J Pediatr 161, 848854.
34. Pereira-Santos, M, Costa, PR, Assis, AM, et al. (2015) Obesity and vitamin D deficiency: a systematic review and meta-analysis. Obes Rev 16, 341349.
35. Pourghassem Gargari, B, Pourteymour Fard Tabrizi, F, Sadien, B, et al. (2016) Vitamin D status is related to oxidative stress but not high-sensitive C-reactive protein in women with pre-eclampsia. Gynecol Obstet Invest 81, 308314.
36. De Almeida, JP, Liberatti, LS, Barros, FE, et al. (2016) Profile of oxidative stress markers is dependent on vitamin D levels in patients with chronic hepatitis C. Nutrients 32, 362367.
37. Gradinaru, D, Borsa, C, Ionescu, C, et al. (2012) Vitamin D status and oxidative stress markers in elderly with impaired fasting glucose and type 2 diabetes mellitus. Aging Clin Exp Res 24, 595602.
38. Krivošíková, Z, Gajdoš, M & Šebeková, K (2015) Vitamin D levels decline with rising number of cardiometabolic risk factors in healthy adults: association with adipokines, inflammation, oxidative stress and advanced glycation markers. PLOS ONE 10, e0131753.
39. Benzie, IFF & Chung, WY (1999) Total antioxidant power of plasma: male-female differences and effect of anticoagulant used. Clin Chim Acta 36, 104106.
40. Chung, WY & Benzie, IF (2013) Plasma allantoin measurement by isocratic liquid chromatography with tandem mass spectrometry: method evaluation and application in oxidative stress biomonitoring. Clin Chim Acta 424, 237244.
41. Lee, KF, Chung, WY & Benzie, IF (2010) Urine 8-oxo-7,8-dihydro-2’-deoxyguanosine (8-oxodG), a specific marker of oxidative stress, using direct, isocratic LC-MS/MS: method evaluation and application in study of biological variation in healthy adults. Clin Chim Acta 411, 416422.
42. Friedewald, WT, Levy, RI & Fredrickson, DS (1972) Estimation of the concentration of low-density lipoprotein cholesterol in plasma, without use of the preparative ultracentrifuge. Clin Chem 18, 499502.
43. Benzie, IF & Strain, JJ (1996) The ferric reducing ability of plasma (FRAP) as a measure of ‘antioxidant power’: the FRAP assay. Anal Biochem 239, 7076.
44. Benzie, IF & Strain, JJ (1999) Ferric reducing/antioxidant power assay: direct measure of total antioxidant activity of biological fluids and modified version for simultaneous measurement of total antioxidant power and ascorbic acid concentration. Methods Enzymol 299, 1527.
45. Chung, WY, Chung, JK, Szeto, YT, et al. (2001) Plasma ascorbic acid: measurement, stability and clinical utility revisited. Clin Biochem 34, 623627.
46. Benzie, IF & Strain, JJ (1996) Uric acid: Friend or foe? Redox Rep 2, 231234.
47. Department of Biostatistics, Vanderbilt University School of Medicine (2014) PS: Power and Sample Size Calculation. biostat.mc.vanderbilt.edu (accessed August 2014).
48. Lan, N, Luo, G, Yang, X, et al. (2014) 25-Hydroxyvitamin D3 deficiency enhances oxidative stress and corticosteroid resistance in severe asthma exacerbation. PLOS ONE (Epublication ahead of print version).
49. Afshari, L, Amani, R, Soltani, F, et al. (2015) The relation between serum vitamin D levels and body antioxidant status in ischemic stroke patients: a case-control study. Adv Biomed Res 4, 213.
50. World Economic Forum (2016) The global risks report 2016. www3.weforum.org/docs/Media/TheGlobalRisksReport2016.pdf
51. Wang, EW, Collins, AR, Pang, MYC, et al. (2016) Vitamin D and oxidation-induced DNA damage: is there a connection? Mutagen 31, 655659.
52. Broedbaek, K, Weimann, A, Stovgaard, ES, et al. (2011) Urinary 8-oxo-7,8-dihydro-2’-deoxyguanosine as a biomarker in type 2 diabetes. Free Radic Biol Med 51, 14731479.
53. Xu, C, Perera, RA, Chan, YH, et al. (2015) Determinants of serum 25-hydroxyvitamin D in Hong Kong. Br J Nutr 114, 144151.

Keywords

Vitamin D deficiency, oxidative stress and antioxidant status: only weak association seen in the absence of advanced age, obesity or pre-existing disease

  • Erica W. Wang (a1), Parco M. Siu (a1), Marco Y. Pang (a2), Jean Woo (a3), Andrew R. Collins (a4) and Iris F. F. Benzie (a1)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed