Skip to main content Accessibility help
×
Home

Validation and calibration of the Eating Assessment in Toddlers FFQ (EAT FFQ) for children, used in the Growing Up Milk – Lite (GUMLi) randomised controlled trial

  • Amy L. Lovell (a1), Peter S. W. Davies (a2), Rebecca J. Hill (a2), Tania Milne (a1), Misa Matsuyama (a2), Yannan Jiang (a3), Rachel X. Chen (a3), Anne-Louise M. Heath (a4), Cameron C. Grant (a5) (a6) (a7) and Clare R. Wall (a1)...

Abstract

The Eating Assessment in Toddlers FFQ (EAT FFQ) has been shown to have good reliability and comparative validity for ranking nutrient intakes in young children. With the addition of food items (n 4), we aimed to re-assess the validity of the EAT FFQ and estimate calibration factors in a sub-sample of children (n 97) participating in the Growing Up Milk – Lite (GUMLi) randomised control trial (2015–2017). Participants completed the ninety-nine-item GUMLi EAT FFQ and record-assisted 24-h recalls (24HR) on two occasions. Energy and nutrient intakes were assessed at months 9 and 12 post-randomisation and calibration factors calculated to determine predicted estimates from the GUMLi EAT FFQ. Validity was assessed using Pearson correlation coefficients, weighted kappa (κ) and exact quartile categorisation. Calibration was calculated using linear regression models on 24HR, adjusted for sex and treatment group. Nutrient intakes were significantly correlated between the GUMLi EAT FFQ and 24HR at both time points. Energy-adjusted, de-attenuated Pearson correlations ranged from 0·3 (fibre) to 0·8 (Fe) at 9 months and from 0·3 (Ca) to 0·7 (Fe) at 12 months. Weighted κ for the quartiles ranged from 0·2 (Zn) to 0·6 (Fe) at 9 months and from 0·1 (total fat) to 0·5 (Fe) at 12 months. Exact agreement ranged from 30 to 74 %. Calibration factors predicted up to 56 % of the variation in the 24HR at 9 months and 44 % at 12 months. The GUMLi EAT FFQ remained a useful tool for ranking nutrient intakes with similar estimated validity compared with other FFQ used in children under 2 years.

Copyright

Corresponding author

*Corresponding author: Dr Amy L. Lovell, fax +64 9 3035962, email a.lovell@auckland.ac.nz

References

Hide All
1.Livingstone, M & Robson, PJ (2000) Measurement of dietary intake in children. Proc Nutr Soc 59, 279293.
2.Roman-Viñas, B, Ortiz-Andrellucchi, A, Mendez, M, et al. (2010) Is the food frequency questionnaire suitable to assess micronutrient intake adequacy for infants, children and adolescents? Matern Child Nutr 6, 112121.
3.Ortiz-Andrellucchi, A, Henríquez-Sánchez, P, Sánchez-Villegas, A, et al. (2009) Dietary assessment methods for micronutrient intake in infants, children and adolescents: a systematic review. Br J Nutr 102, Suppl. 1, S87S117.
4.Livingstone, M, Robson, PJ & Wallace, J (2004) Issues in dietary intake assessment of children and adolescents. Br J Nutr 92, S213S222.
5.Andersen, LF, Lande, B, Arsky, GH, et al. (2003) Validation of a semi-quantitative food-frequency questionnaire used among 12-month-old Norwegian infants. Eur J Clin Nutr 57, 881888.
6.Gibson, RS (2005) Measuring food consumption of individuals. In Principles of Nutritional Assessment, 2nd ed., chapter 3, pp. 4159. New York: Oxford University Press.
7.Carroll, RJ, Pee, D, Freedman, LS, et al. (1997) Statistical design of calibration studies. Am J Clin Nutr 65, 1187S1189S.
8.Willett, W (2012) Nutritional Epidemiology, 3rd ed. Oxford: Oxford University Press.
9.Lovell, A, Bulloch, R, Wall, CR, et al. (2017) Quality of food-frequency questionnaire validation studies in the dietary assessment of children aged 12 to 36 months: a systematic literature review. J Nutr Sci 6, e16.
10.Rosner, B, Willett, WC & Spiegelman, D (1989) Correction of logistic regression relative risk estimates and confidence intervals for systematic within-person measurement error. Stat Med 8, 10511069.
11.Kaaks, R, Riboli, E & van Staveren, W (1995) Calibration of dietary intake measurements in prospective cohort studies. Am J Epidemiol 142, 548556.
12.National Institutes of Health & National Cancer Institute (2019) Dietary Assessment Primer. https://dietassessmentprimer.cancer.gov/ (accessed October 2019).
13.Fumagalli, F, Pontes Monteiro, J, Sartorelli, DS, et al. (2008) Validation of a food frequency questionnaire for assessing dietary nutrients in Brazilian children 5 to 10 years of age. Nutrition 24, 427432.
14.Cade, J, Thompson, R, Burley, V, et al. (2002) Development, validation and utilisation of food-frequency questionnaires – a review. Public Health Nutr 5, 567587.
15.Wall, CR, Hill, RJ, Lovell, AL, et al. (2019) A multicenter, double-blind, randomized, placebo-controlled trial to evaluate the effect of consuming Growing Up Milk “Lite” on body composition in children aged 12–23 mo. Am J Clin Nutr 109, 576585.
16.Taylor, BJ, Heath, AM, Galland, BC, et al. (2011) Prevention of Overweight in Infancy (POI. nz) study: a randomised controlled trial of sleep, food and activity interventions for preventing overweight from birth. BMC Public Health 11, 942.
17.Marriott, LD, Inskip, HM, Borland, SE, et al. (2009) What do babies eat? Evaluation of a food frequency questionnaire to assess the diets of infants aged 12 months. Public Health Nutr 12, 967972.
18.Watson, EO, Heath, AM, Taylor, RW, et al. (2015) Relative validity and reproducibility of an FFQ to determine nutrient intakes of New Zealand toddlers aged 12–24 months. Public Health Nutr 18, 32653271.
19.Lovell, AL, Milne, T, Jiang, Y, et al. (2019) Evaluation of the effect of a growing up milk lite vs. cow’s milk on diet quality and dietary intakes in early childhood: the Growing up Milk Lite (GUMLi) randomised controlled trial. Nutrients 11, 203.
20.Ministry of Health & Cancer Society of New Zealand (2013) Consensus Statement on Vitamin D and Sun Exposure in New Zealand. Wellington: Ministry of Health.
21.Mills, VC, Skidmore, PM, Watson, EO, et al. (2015) Relative validity and reproducibility of a food frequency questionnaire for identifying the dietary patterns of toddlers in New Zealand. J Acad Nutr Diet 115, 551558.
22.Bennett, DA, Landry, D, Little, J, et al. (2017) Systematic review of statistical approaches to quantify, or correct for, measurement error in a continuous exposure in nutritional epidemiology. BMC Med Res Method 17, 146.
23.Watson, P (2003) Development & Pretesting of Methodologies for the Children’s Nutrition Survey: Validation Report: a Report to the Ministry of Health. Report Three: Institute of Food, Nutrition and Human Health, Massey University.
24.Commonwealth Scientific Industrial Research Organisation (CSIRO) (2008) Preventative Health National Research Flagship & University of South Australia. 2007 Australian National Children’s Nutrition and Physical Activity Survey: Main Findings. Canberra: Australian Government Department of Health and Ageing.
25.Blanton, CA, Moshfegh, AJ, Baer, DJ, et al. (2006) The USDA automated multiple-pass method accurately estimates group total energy and nutrient intake. J Nutr 136, 25942599.
26.Briefel, RR, Reidy, K, Karwe, V, et al. (2004) Feeding infants and toddlers study: improvements needed in meeting infant feeding recommendations. J Am Diet Assoc 104, 31.
27.Devaney, B, Kalb, L, Briefel, R, et al. (2004) Feeding infants and toddlers study: overview of the study design. J Am Diet Assoc 104, 8.
28.Emmett, P, North, K & Noble, S (2000) Types of drinks consumed by infants at 4 and 8 months of age: a descriptive study. Public Health Nutr 3, 211217.
29.Lennox, A, Sommerville, J, Ong, K, et al. (2013) Diet, Nutrition Survey of Infants, Young Children, 2011. A survey carried out on behalf of the Department of Health and Food Standards Agency. London: Public Health England.
30.Commonwealth Scientific Industrial Research Organisation (CSIRO (2010) Preventative Health National Research Flagship & University of South Australia. User Guide: 2007 Australian National Children’s Nutrition and Physical Activity Survey. Canberra: Australian Government Department of Health and Ageing.
31.Department of Health and Aging (2008) 2007 Australian National Children’s Nutrition and Physical Activity Survey. Canberra, ACT, Australia: Australian Government Publishing Service.
32.The MathWorks Inc. (2018) MATLAB and Statistics Toolbox, release 2018a. Natick, MA: The MathWorks Inc.
33.Xyris Software Australia Pty Ltd (2018) Foodworks Professional v9. Brisbane: Xyris Software Australia Pty Ltd.
34.Institute for Plant & Food Research Limited, Ministry of Health. New Zealand Food composition Database: New Zealand FOOD files 2016 Version 01. 2016; Available at: http://www.foodcomposition.co.nz/foodfiles. Accessed 15/07/2018.
35.Food Standards Australia and New Zealand (FSANZ) (2016) AUSNUT 2011–13 Food Composition Data. http://www.foodstandards.gov.au/science/monitoringnutrients/ausnut/Pages/default.aspx (accessed June 2018).
36.IBM Corp. (2018) IBM Statistics for Windows, version 26.0. Armonk, NY: IBM Corp.
37.SAS Institute (2014) The SAS System for Windows, release 9.4. Cary, NC: SAS Institute Inc.
38.Willett, W (2012) Correction for the effects of measurement error. In Nutritional Epidemiology, 3rd ed., chapter 12, pp. 302320. New York: Oxford University Press.
39.Rosner, B & Willett, WC (1988) Interval estimates for correlation coefficients corrected for within-person variation: implications for study design and hypothesis testing. Am J Epidemiol 127, 377386.
40.Masson, LF, MCNeill, G, Tomany, JO, et al. (2003) Statistical approaches for assessing the relative validity of a food-frequency questionnaire: use of correlation coefficients and the kappa statistic. Public Health Nutr 6, 313321.
41.Landis, JR & Koch, GG (1977) The measurement of observer agreement for categorical data. Biometrics 33, 159174.
42.Johansson, I, Hallmans, G, Wikman, Å, et al. (2002) Validation and calibration of food-frequency questionnaire measurements in the Northern Sweden Health and Disease cohort. Public Health Nutr 5, 487496.
43.Andersen, LF, Lande, B, Trygg, K, et al. (2004) Validation of a semi-quantitative food-frequency questionnaire used among 2-year-old Norwegian children. Public Health Nutr 7, 757764.
44.Williams, PL & Innis, SM (2005) Food frequency questionnaire for assessing infant iron nutrition. Can J Dietetic Pract Res 66, 176182.
45.Marshall, TA, Gilmore, JME, Broffitt, B, et al. (2003) Relative validation of a beverage frequency questionnaire in children ages 6 months through 5 years using 3-day food and beverage diaries. J Am Diet Assoc 103, 714720.
46.Rankin, SJ, Levy, SM, Warren, JJ, et al. (2011) Relative validity of an FFQ for assessing dietary fluoride intakes of infants and young children living in Iowa. Public Health Nutr 14, 1229.
47.Parrish, LA, Marshall, JA, Krebs, NF, et al. (2003) Validation of a food frequency questionnaire in preschool children. Epidemiology 14, 213217.
48.Blum, RE, Wei, EK, Rockett, HR, et al. (1999) Validation of a food frequency questionnaire in Native American and Caucasian children 1 to 5 years of age. Matern Child Health J 3, 167172.
49.D’Ambrosio, A, Tiessen, A & Simpson, JR (2012) Development of a food frequency questionnaire for toddlers of Low-German-Speaking Mennonites from Mexico. Can J Diet Pract Res 73, 4044.
50.Palacios, C, Rivas-Tumanyan, S, Santiago-Rodríguez, EJ, et al. (2017) A semi-quantitative food frequency questionnaire validated in Hispanic infants and toddlers aged 0 to 24 months. J Acad Nutr Diet 117, 526535.e9.
51.Black, AE & Cole, TJ (2001) Biased over-or under-reporting is characteristic of individuals whether over time or by different assessment methods. J Am Diet Assoc 101, 7080.
52.Black, AE, Goldberg, GR, Jebb, SA, et al. (1991) Critical evaluation of energy intake data using fundamental principles of energy physiology: 2. Evaluating the results of published surveys. Eur J Clin Nutr 45, 583599.
53.Goldberg, GR, Black, AE, Jebb, SA, et al. (1991) Critical evaluation of energy intake data using fundamental principles of energy physiology: 1. Derivation of cut-off limits to identify under-recording. Eur J Clin Nutr 45, 569581.
54.Nelson, M, Black, AE, Morris, JA, et al. (1989) Between-and within-subject variation in nutrient intake from infancy to old age: estimating the number of days required to rank dietary intakes with desired precision. Am J Clin Nutr 50, 155167.
55.Pereira, RA, Araujo, MC, Lopes, TdS, et al. (2010) How many 24-hour recalls or food records are required to estimate usual energy and nutrient intake? Cadernos Saude Publica 26, 21012111.
56.Kipnis, V, Freedman, LS, Brown, CC, et al. (1997) Effect of measurement error on energy-adjustment models in nutritional epidemiology. Am J Epidemiol 146, 842855.
57.Millen, AE, Midthune, D, Thompson, FE, et al. (2006) The National Cancer Institute diet history questionnaire: validation of pyramid food servings. Am J Epidemiol 163, 279288.
58.Araujo, MC, Yokoo, EM & Pereira, RA (2010) Validation and calibration of a semiquantitative food frequency questionnaire designed for adolescents. J Am Diet Assoc 110, 11701177.
59.Carithers, TC, Talegawkar, SA, Rowser, ML, et al. (2009) Validity and calibration of food frequency questionnaires used with African-American adults in the Jackson Heart Study. J Am Diet Assoc 109, 11841193.e2.
60.Kynast-Wolf, G, Becker, N, Kroke, A, et al. (2002) Linear regression calibration: theoretical framework and empirical results in EPIC, Germany. Ann Nutr Metab 46, 28.
61.Hoffmann, K, Kroke, A, Klipstein-Grobusch, K, et al. (2002) Standardization of dietary intake measurements by nonlinear calibration using short-term reference data. Am J Epidemiol 156, 862870.
62.Slater, B, Marchioni, DML & Voci, SM (2007) Use of linear regression for correction of dietary data. Rev Saude Publica 41, 190196.
63.Shrapnel, W & Truswell, S (2006) Vitamin D deficiency in Australia and New Zealand: what are the dietary options? Nutr Diet 63, 206212.
64.Kaaks, R & Riboli, E (1997) Validation and calibration of dietary intake measurements in the EPIC project: methodological considerations. European Prospective Investigation into Cancer and Nutrition. Int J Epidemiol 26, S15.
65.Kipnis, V, Midthune, D, Freedman, L, et al. (2002) Bias in dietary-report instruments and its implications for nutritional epidemiology. Public Health Nutr 5, 915923.
66.Baranowski, T, Sprague, D, Baranowski, JH, et al. (1991) Accuracy of maternal dietary recall for preschool children. J Am Diet Assoc 91, 669674.
67.Potischman, N & Freudenheim, JL (2003) Biomarkers of nutritional exposure and nutritional status: an overview. J Nutr 133, 873S874S.
68.Lovell, AL, Davies, PS, Hill, RJ, et al. (2018) Compared with cow milk, a growing-up milk increases vitamin D and iron status in healthy children at 2 years of age: the Growing-Up Milk–Lite (GUMLi) randomized controlled trial. J Nutr 148, 15701579.

Keywords

Type Description Title
WORD
Supplementary materials

Lovell et al. supplementary material
Figure S1 and Table S1

 Word (29 KB)
29 KB

Validation and calibration of the Eating Assessment in Toddlers FFQ (EAT FFQ) for children, used in the Growing Up Milk – Lite (GUMLi) randomised controlled trial

  • Amy L. Lovell (a1), Peter S. W. Davies (a2), Rebecca J. Hill (a2), Tania Milne (a1), Misa Matsuyama (a2), Yannan Jiang (a3), Rachel X. Chen (a3), Anne-Louise M. Heath (a4), Cameron C. Grant (a5) (a6) (a7) and Clare R. Wall (a1)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.