Skip to main content Accessibility help
×
Home

Transcriptional response of HT-29 intestinal epithelial cells to human and bovine milk oligosaccharides

  • Jonathan A. Lane (a1) (a2), John O'Callaghan (a1), Stephen D. Carrington (a2) and Rita M. Hickey (a1)

Abstract

Human milk oligosaccharides (HMO) have been shown to interact directly with immune cells. However, large quantities of HMO are required for intervention or clinical studies, but these are unavailable in most cases. In this respect, bovine milk is potentially an excellent source of commercially viable analogues of these unique molecules. In the present study, we compared the transcriptional response of colonic epithelial cells (HT-29) to the entire pool of HMO and bovine colostrum oligosaccharides (BCO) to determine whether the oligosaccharides from bovine milk had effects on gene expression that were similar to those of their human counterparts. Gene set enrichment analysis of the transcriptional data revealed that there were a number of similar biological processes that may be influenced by both treatments including a response to stimulus, signalling, locomotion, and multicellular, developmental and immune system processes. For a more detailed insight into the effects of milk oligosaccharides, the effect on the expression of immune system-associated glycogenes was chosen as a case study when performing validation studies. Glycogenes in the current context are genes that are directly or indirectly regulated in the presence of glycans and/or glycoconjugates. RT-PCR analysis revealed that HMO and BCO influenced the expression of cytokines (IL-1β, IL-8, colony-stimulating factor 2 (granulocyte–macrophage) (GM-CSF2), IL-17C and platelet factor 4 (PF4)), chemokines (chemokine (C–X–C motif) ligand 1 (CXCL1), chemokine (C–X–C motif) ligand 3 (CXCL3), chemokine (C–C motif) ligand 20 (CCL20), chemokine (C–X–C motif) ligand 2 (CXCL2), chemokine (C–X–C motif) ligand 6 (CXCL6), chemokine (C–C motif) ligand 5 (CCL5), chemokine (C–X3–C motif) ligand 1 (CX3CL1) and CXCL2) and cell surface receptors (interferon γ receptor 1 (IFNGR1), intercellular adhesion molecule-1 (ICAM-1), intercellular adhesion molecule-2 (ICAM-2) and IL-10 receptor α (IL10RA)). The present study suggests that milk oligosaccharides contribute to the development and maturation of the intestinal immune response and that bovine milk may be an attractive commercially viable source of oligosaccharides for such applications.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Transcriptional response of HT-29 intestinal epithelial cells to human and bovine milk oligosaccharides
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Transcriptional response of HT-29 intestinal epithelial cells to human and bovine milk oligosaccharides
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Transcriptional response of HT-29 intestinal epithelial cells to human and bovine milk oligosaccharides
      Available formats
      ×

Copyright

Corresponding author

*Corresponding author: R. M. Hickey, fax +353 25 42340, email rita.hickey@teagasc.ie

References

Hide All
1Kunz, C, Rodriguez-Palmero, M, Koletzko, B, et al. (1999) Nutritional and biochemical properties of human milk, part I: general aspects, proteins, and carbohydrates. Clin Perinatol 26, 307333.
2Kuntz, S, Rudloff, S & Kunz, C (2008) Oligosaccharides from human milk influence growth-related characteristics of intestinally transformed and non-transformed intestinal cells. Br J Nutr 99, 462471.
3Newburg, DS, Ruiz-Palacios, GM & Morrow, AL (2005) Human milk glycans protect infants against enteric pathogens. Annu Rev Nutr 25, 3758.
4Bode, L (2006) Recent advances on structure, metabolism, and function of human milk oligosaccharides. J Nutr 136, 21272130.
5Hickey, RM (2009) Harnessing milk oligosaccharides for nutraceutical applications. In Dairy-derived Ingredients: Food and Nutraceutical Uses, pp. 308343 [Corredig, M, editor]. Guelph, ON: University of Guelph.
6Field, AC, Caccavelli, L, Fillion, J, et al. (2001) Neonatal induction and maintenance of tolerance to Th2-induced immune manifestations in rats. Transplant Proc 33, 22752276.
7Schack-Nielsen, L & Michaelsen, KF (2007) Advances in our understanding of the biology of human milk and its effects on the offspring. J Nutr 137, 503S510S.
8Romagnani, S (2004) The increased prevalence of allergy and the hygiene hypothesis: missing immune deviation, reduced immune suppression, or both? Immunology 112, 352363.
9Niers, LEM, Hoekstra, MO, Timmerman, HM, et al. (2007) Selection of probiotic bacteria for prevention of allergic diseases: immunomodulation of neonatal dendritic cells. Clin Experimen Immunol 149, 344352.
10Velupillai, P & Harn, DA (1994) Oligosaccharide-specific induction of interleukin 10 production by B220+ cells from schistosome-infected mice: a mechanism for regulation of CD4+ T-cell subsets. Proc Natl Acad Sci U S A 91, 1822.
11Eiwegger, T, Stahl, B, Schmitt, J, et al. (2004) Human milk-derived oligosaccharides and plant-derived oligosaccharides stimulate cytokine production of cord blood T-cells in vitro. Pediatr Res 56, 536540.
12Vos, AP, Haarman, M, van Ginkel, JW, et al. (2007) Dietary supplementation of neutral and acidic oligosaccharides enhances Th1-dependent vaccination responses in mice. Pediatr Aller Immunol 18, 304312.
13Tao, N, DePeters, EJ, Freeman, S, et al. (2008) Bovine milk glycome. J Dairy Sci 91, 37683778.
14Tao, N, DePeters, EJ, German, JB, et al. (2009) Variations in bovine milk oligosaccharides during early and middle lactation stages analyzed by high-performance liquid chromatography-chip/mass spectrometry. J Dairy Sci 92, 29913001.
15Barile, D, Marotta, M, Chu, C, et al. (2010) Neutral and acidic oligosaccharides in Holstein–Friesian colostrum during the first 3 days of lactation measured by high performance liquid chromatography on a microfluidic chip and time-of-flight mass spectrometry. J Dairy Sci 93, 39403949.
16Marino, K, Lane, JA, Abrahams, JL, et al. (2011) Method for milk oligosaccharide profiling by 2-aminobenzamide labeling and hydrophilic interaction chromatography. Glycobiology 21, 13171330.
17Mysore, JV, Wigginton, T, Simon, PM, et al. (1999) Treatment of Helicobacter pylori infection in rhesus monkeys using a novel antiadhesion compound. Gastroenterology 117, 13161325.
18Hakkarainen, J, Toivanen, M, Leinonen, A, et al. (2005) Human and bovine milk oligosaccharides inhibit Neisseria meningitidis pili attachment in vitro. J Nutr 135, 24452448.
19Matrosovich, MN, Gambaryan, AS, Tuzikov, AB, et al. (1993) Probing of the receptor-binding sites of the H1 and H3 influenza A and influenza B virus hemagglutinins by synthetic and natural sialosides. Virology 196, 111121.
20Lane, JA, Marino, K, Naughton, J, et al. (2012) Anti-infective bovine colostrum oligosaccharides: Campylobacter jejuni as a case study. Int J Food Microbiol 157, 182188.
21Otani, H & Monnai, M (1993) Inhibition of proliferative responses of mouse spleen lymphocytes by bovine milk k-casein digests. Food Agric Immunol 5, 219229.
22Kobata, A & Ginsburg, V (1972) Oligosaccharides of human milk. IV. Isolation and characterization of a new hexasaccharide, lacto-N-neohexaose. Arch Biochem Biophys 150, 273281.
23Bradford, MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72, 248254.
24Maere, S, Heymans, K & Kuiper, M (2005) BiNGO: a Cytoscape plugin to assess overrepresentation of gene ontology categories in biological networks. Bioinformatics 21, 34483449.
25Dydensborg, AB, Herring, E, Auclair, J, et al. (2006) Normalizing genes for quantitative RT-PCR in differentiating human intestinal epithelial cells and adenocarcinomas of the colon. Am J Physiol Gastrointest Liver Physiol 290, G1067G1074.
26Kuntz, S, Kunz, C & Rudloff, S (2009) Oligosaccharides from human milk induce growth arrest via G2/M by influencing growth-related cell cycle genes in intestinal epithelial cells. Br J Nutr 101, 13061315.
27Ninonuevo, MR, Park, Y, Yin, HF, et al. (2006) A strategy for annotating the human milk glycome. J Agric Food Chem 54, 74717480.
28Urashima, T, Kitaoka, M, Terabayashi, T, et al. (2011) Milk Oligosaccharides. New York: Nova Science Publishers.
29Bruntz, R, Dabrowski, U, Dabrowski, J, et al. (1988) Fucose-containing oligosaccharides from human milk from a donor of blood group 0 Le(a) nonsecretor. Biol Chem Hoppe Seyler 369, 257273.
30Haeuw-Fievre, S, Wieruszeski, JM, Plancke, Y, et al. (1993) Primary structure of human milk octa-, dodeca- and tridecasaccharides determined by a combination of 1H-NMR spectroscopy and fast-atom-bombardment mass spectrometry. Evidence for a new core structure, the para-lacto-N-octaose. Eur J Biochem 215, 361371.
31Boehm, G & Stahl, B (2007) Oligosaccharides from milk. J Nutr 137, 847s849s.
32Pappu, R, Ramirez-Carrozzi, V & Sambandam, A (2011) The interleukin-17 cytokine family: critical players in host defence and inflammatory diseases. Immunology 134, 816.
33Lee, JW, Wang, P, Kattah, MG, et al. (2008) Differential regulation of chemokines by IL-17 in colonic epithelial cells. J Immunol 181, 65366545.
34Yang, D, Chen, Q, Hoover, DM, et al. (2003) Many chemokines including CCL20/MIP-3 alpha display antimicrobial activity. J Leukoc Biol 74, 448455.
35Ryan, KA, O'Hara, AM, van Pijkeren, JP, et al. (2009) Lactobacillus salivarius modulates cytokine induction and virulence factor gene expression in Helicobacter pylori. J Med Microbiol 58, 9961005.
36Sibartie, S, O'Hara, AM, Ryan, J, et al. (2009) Modulation of pathogen-induced CCL20 secretion from HT-29 human intestinal epithelial cells by commensal bacteria. BMC Immunol 10, 54.
37O'Callaghan, J, Butto, LF, Macsharry, J, et al. (2012) Influence of adhesion and bacteriocin production by Lactobacillus salivarius on the intestinal epithelial cell transcriptional response. Appl Environ Microbiol 78, 51965203.
38O'Flaherty, S & Klaenhammer, TR (2012) Influence of exposure time on gene expression by human intestinal epithelial cells exposed to Lactobacillus acidophilus. Appl Environ Microbiol 78, 50285032.
39van Baarlen, P, Troost, F, van der Meer, C, et al. (2011) Human mucosal in vivo transcriptome responses to three lactobacilli indicate how probiotics may modulate human cellular pathways. Proc Natl Acad Sci U S A 108, 45624569.
40van Baarlen, P, Troost, FJ, van Hemert, S, et al. (2009) Differential NF-kappa B pathways induction by Lactobacillus plantarum in the duodenum of healthy humans correlating with immune tolerance. Proc Natl Acad Sci U S A 106, 23712376.
41Spehlmann, ME & Eckmann, L (2009) Nuclear factor-kappa B in intestinal protection and destruction. Curr Opin Gastroenterol 25, 9299.
42Claud, EC, Savidge, T & Walker, WA (2003) Modulation of human intestinal epithelial cell IL-8 secretion by human milk factors. Pediatr Res 53, 419425.
43Daddaoua, A, Puerta, V, Requena, P, et al. (2006) Goat milk oligosaccharides are anti-inflammatory in rats with hapten-induced colitis. J Nutr 136, 672676.
44Matsushita, K, Takeuchi, O, Standley, DM, et al. (2009) Zc3h12a is an RNase essential for controlling immune responses by regulating mRNA decay. Nature 458, 11851190.
45Field, CJ (2005) The immunological components of human milk and their effect of immune development in infants. J Nutr 135, 14.

Keywords

Transcriptional response of HT-29 intestinal epithelial cells to human and bovine milk oligosaccharides

  • Jonathan A. Lane (a1) (a2), John O'Callaghan (a1), Stephen D. Carrington (a2) and Rita M. Hickey (a1)

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.