Skip to main content Accessibility help
×
Home

Trajectory and determinants of change in lean soft tissue over the postpartum period

  • Sarah A. Elliott (a1), Leticia C. R. Pereira (a1), Linda J. McCargar (a1), Carla M. Prado (a1), Rhonda C. Bell (a1) and the ENRICH Study Team (a1)...

Abstract

The aim of this study was to characterise changes in lean soft tissue (LST) and examine the contributions of energy intake, physical activity and breast-feeding practices to LST changes at 3 and 9 months postpartum. We examined current weight, LST (via dual-energy X-ray absorptiometry), dietary intake (3-d food diary), physical activity (Baecke questionnaire) and breast-feeding practices (3-d breast-feeding diary) in forty-nine women aged 32·9 (sd 3·8) years. Changes in LST varied from −2·51 to +2·50 kg with twenty-nine women gaining LST (1·1 (sd 0·7) kg, P<0·001) and twenty women losing LST (−0·9 (sd 0·8) kg, P<0·001). Energy intake (133 (SD 42) v. 109 (SD 33) kJ/kg, P=0·019) and % kJ from fat at 3 months postpartum was higher in women who gained LST at 9 months postpartum (gained LST=34 (sd 5) % kJ; lost LST=29 (sd 4) % kJ, P=0·002). Women who gained LST reported breast-feeding their infants more frequently (gained LST=8 (sd 3) feeds/d; lost LST=5 (sd 1) feeds/d, P=0·014) and for more time per d (gained LST=115 (sd 78) min/d; lost LST=59 (sd 34) min/d, P=0·016) at 9 months postpartum. Energy intake and % kJ from fat at 3 months were significant predictors of LST gain (β=0·08 (se 0·04) and 0·24 (se 0·09), respectively). This suggests that gain in LST may be associated with more frequent and longer episodes of breast-feeding at 9 months postpartum as well as dietary intake early in the postpartum period.

Copyright

Corresponding author

*Corresponding author: R. C. Bell, email rhonda.bell@ualberta.ca

References

Hide All
1. Gilmore, LA, Klempel-Donchenko, M & Redman, LM (2015) Pregnancy as a window to future health: excessive gestational weight gain and obesity. Semin Perinatol 39, 296303.
2. Widen, EM & Gallagher, D (2014) Body composition changes in pregnancy: measurement, predictors and outcomes. Eur J Clin Nutr 68, 643652.
3. Cho, GJ, Yoon, HJ, Kim, E-J, et al. (2011) Postpartum changes in body composition. Obesity 19, 24252428.
4. Gunderson, EP (2009) Childbearing and obesity in women: weight before, during, and after pregnancy. Obstet Gynecol Clin North Am 36, 317332, ix.
5. Neville, CE, McKinley, MC, Holmes, VA, et al. (2014) The relationship between breastfeeding and postpartum weight change--a systematic review and critical evaluation. Int J Obes 38, 577590.
6. Pietrobelli, A, Faith, MS, Wang, J, et al. (2002) Association of lean tissue and fat mass with bone mineral content in children and adolescents. Obes Res 10, 5660.
7. Amarya, S, Singh, K & Sabharwal, M (2015) Changes during aging and their association with malnutrition. J Clin Gerontol Geriatr 6, 7884.
8. Wolfe, RR (2006) The underappreciated role of muscle in health and disease. Am J Clin Nutr 84, 475482.
9. Heymsfield, SB, Gallagher, D, Poehlman, ET, et al. (1994) Menopausal changes in body composition and energy expenditure. Exp Gerontol 29, 377389.
10. Zurlo, F, Larson, K, Bogardus, C, et al. (1990) Skeletal muscle metabolism is a major determinant of resting energy expenditure. J Clin Invest 86, 14231427.
11. Woods, JA, Wilund, KR, Martin, SA, et al. (2012) Exercise, inflammation and aging. Aging Dis 3, 130140.
12. Santanasto, AJ, Goodpaster, BH, Kritchevsky, SB, et al. (2016) Body composition remodeling and mortality: the health aging and body composition study. J Gerontol A Biol Sci Med Sci 72, 513519.
13. Nishiguchi, S, Yamada, M, Kajiwara, Y, et al. (2014) Effect of physical activity at midlife on skeletal muscle mass in old age in community-dwelling older women: a cross-sectional study. J Clin Gerontol Geriatr 5, 1822.
14. Krieger, JW, Sitren, HS, Daniels, MJ, et al. (2006) Effects of variation in protein and carbohydrate intake on body mass and composition during energy restriction: a meta-regression 1. Am J Clin Nutr 83, 260274.
15. Maltais, ML, Desroches, J & Dionne, IJ (2009) Changes in muscle mass and strength after menopause. J Musculoskelet Neuronal Interact 9, 186197.
16. Diniz, TA, Christofaro, DGD, dos Santos, VR, et al. (2015) Practice of moderate physical activity can attenuate the loss of lean body mass in menopausal women. Eur J Obstet Gynecol Reprod Biol 11, 151159.
17. St-Onge, MP (2005) Relationship between body composition changes and changes in physical function and metabolic risk factors in aging. Curr Opin Clin Nutr Metab Care 8, 523528.
18. Muller, MJ, Bosy-Westphal, A, Kutzner, D, et al. (2003) Metabolically active components of fat free mass (FFM) and resting energy expenditure (REE) in humans. Forum Nutr 56, 301303.
19. Petak, S, Barbu, CG, Yu, EW, et al. (2013) The official positions of the international society for clinical densitometry: body composition analysis reporting. J Clin Densitom 16, 508519.
20. Baecke, JA, Burema, J & Frijters, J (1982) A short questionnaire for the measurement of habitual physical activity in epidemiological studies. Am J Clin Nutr 36, 936942.
21. Food and Agriculture Organization (2001) Energy Requirements of Lactation. Human Energy Requirements: Report of a Joint FAO/WHO/UNU Expert Consultation. Rome: Food and Agriculture Organization of the United Nations.
22. Institute of Medicine (2002) Physical Activity. Dietary Reference Intakes for Energy, Carbohydrate, Fiber, Fat, Fatty Acids, Cholesterol, Protein and Amino Acids (Macronutrients). Washington, DC: Institute of Medicine/Food and Nutrition Board.
23. Blum, JW, Beaudoin, CM & Caton-Lemos, L (2004) Physical activity patterns and maternal well-being in postpartum women. Matern Child Health J 8, 163169.
24. Durham, HA, Morey, MC, Lovelady, CA, et al. (2011) Postpartum physical activity in overweight and obese women. J Phys Act Health 8, 988993.
25. Health Canada (2010) Prenatal Nutrition Guidelines for Health Professionals: Gestational Weight Gain. Ottawa: Health Canada.
26. AbuSabha, R & Greene, G (1998) Body weight, body composition, and energy intake changes in breastfeeding mothers. J Hum Lact 14, 119124.
27. Møller, UK, við Streym, S, Mosekilde, L, et al. (2012) Changes in bone mineral density and body composition during pregnancy and postpartum. A controlled cohort study. Osteoporos Int 23, 12131223.
28. Hatsu, IE, McDougald, DM & Anderson, AK (2008) Effect of infant feeding on maternal body composition. Int Breastfeed J 3, 18.
29. Prado, CMM, Bekaii-Saab, T, Doyle, LA, et al. (2012) Skeletal muscle anabolism is a side effect of therapy with the MEK inhibitor: selumetinib in patients with cholangiocarcinoma. Br J Cancer 106, 15831586.
30. Blevins, JE & Baskin, DG (2015) Translational and therapeutic potential of oxytocin as an anti-obesity strategy: insights from rodents, nonhuman primates and humans. Physiol Behav 152, 438449.
31. Ben-Jonathan, N & Hugo, E (2015) Prolactin (PRL) in adipose tissue: regulation and functions. Adv Exp Med Biol 846, 135.
32. Lawson, EA, Ackerman, KE, Slattery, M, et al. (2014) Oxytocin secretion is related to measures of energy homeostasis in young amenorrheic athletes. J Clin Endocrinol Metab 99, E881E885.
33. Motil, KJ, Sheng, HP, Kertz, BL, et al. (1998) Lean body mass of well-nourished women is preserved during lactation. Am J Clin Nutr 67, 292300.
34. Noreen, EE, Sass, MJ, Crowe, ML, et al. (2010) Effects of supplemental fish oil on resting metabolic rate, body composition, and salivary cortisol in healthy adults. J Int Soc Sports Nutr 7, 17.
35. Smith, GI, Atherton, P, Reeds, DN, et al. (2011) Omega-3 polyunsaturated fatty acids augment the muscle protein anabolic response to hyperaminoacidemia-hyperinsulinemia in healthy young and middle aged men and women. Clin Sci 121, 267278.
36. Vazquez, JA, Paul, HS & Adibi, SA (1988) Regulation of leucine catabolism by caloric sources. Role of glucose and lipid in nitrogen sparing during nitrogen deprivation. J Clin Invest 82, 16061613.
37. Chilibeck, DP, Calder, WA, Sale, GD, et al. (1997) A comparison of strength and muscle mass increases during resistance training in young women. Eur J Appl Physiol Occup Physiol 1, 170175.
38. Sims, ST, Kubo, J, Desai, M, et al. (2013) Changes in physical activity and body composition in postmenopausal women over time. Med Sci Sports Exerc 45, 14861492.
39. Dewey, KG, Lovelady, CA, Nommsen-Rivers, LA, et al. (1994) A randomized study of the effects of aerobic exercise by lactating women on breast-milk volume and composition. N Engl J Med 330, 449453.
40. Larson-Meyer, DE (2002) Effect of postpartum exercise on mothers and their offspring: a review of the literature. Obes Res 10, 841853.
41. Pettee, KK, Storti, KL, Ainsworth, BE, et al. (2008 , ) Measurement of physical activity and inactivity in epidemiologic studies. In Epidemiologic Methods in Physical Activity Studies, September 2009 ed. [I-M Lee, editor]. New York: Oxford University Press, Inc.
42. Roubenoff, R, Kehayias, JJ, Dawson-Hughes, B, et al. (1993) Use of dual-energy X-ray absorptiometry in body-composition studies: not yet a “gold standard”. Am J Clin Nutr 58, 589591.
43. Lof, M & Forsum, E (2004) Hydration of fat-free mass in healthy women with special reference to the effect of pregnancy. Am J Clin Nutr 80, 960965.
44. Butte, NF, Hopkinson, JM, Ellis, KJ, et al. (1997) Changes in fat-free mass and fat mass in postpartum women: a comparison of body composition models. Int J Obes Relat Metab Disord 21, 874880.
45. Najm, N, Popp, C, Traylor, D, et al. (2015) Least significant change of body composition and bone mineral density measured by dual energy X-ray absorptiometry. FASEB J 29, 1 Suppl., 632.8.

Keywords

Trajectory and determinants of change in lean soft tissue over the postpartum period

  • Sarah A. Elliott (a1), Leticia C. R. Pereira (a1), Linda J. McCargar (a1), Carla M. Prado (a1), Rhonda C. Bell (a1) and the ENRICH Study Team (a1)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed