Skip to main content Accessibility help
×
Home

Tea and non-tea flavonol intakes in relation to atherosclerotic vascular disease mortality in older women

  • Kerry L. Ivey (a1) (a2), Joshua R. Lewis (a1) (a2), Richard L. Prince (a1) (a2) and Jonathan M. Hodgson (a3)

Abstract

Epidemiological studies have indicated that dietary flavonoids generally, and flavonols specifically, may contribute to cardiovascular health. Tea consumption, which is often the main dietary source of flavonoids and flavonols, is associated with a reduced risk of cardiovascular outcomes. The primary objective of the present study was to explore the association of the habitual intake of flavonols from tea and non-tea sources with the risk of atherosclerotic vascular disease mortality in a population of elderly women. A total of 1063 women, aged over 75 years, were randomly selected from ambulant Caucasian women living in Perth, Western Australia. Flavonoid consumption was assessed using the US Department of Agriculture Flavonoid, Flavone and Proanthocyanidin databases. Atherosclerotic vascular disease mortality was assessed over 5 years of follow-up through the Western Australian Data Linkage System. During the follow-up, sixty-four women died from atherosclerotic vascular disease. Women in the highest compared with the lowest tertile of flavonol intake had a lower risk of atherosclerotic vascular disease death (OR 0·27, 95 % CI 0·13, 0·59; P≤ 0·01 for trend in multivariate-adjusted models). Similar relationships were observed for flavonol intake derived from both tea (OR 0·38, 95 % CI 0·18, 0·79; P< 0·01) and non-tea (OR 0·41, 95 % CI 0·20, 0·85; P= 0·05) sources. Tea was the main contributor to flavonol intake (65 %), and the intakes of flavonols from tea and non-tea sources were not significantly correlated. In conclusion, increased consumption of flavonols was independently associated with a lower risk of atherosclerotic vascular disease mortality. Both tea and non-tea sources of flavonols were independently associated with this benefit.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Tea and non-tea flavonol intakes in relation to atherosclerotic vascular disease mortality in older women
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Tea and non-tea flavonol intakes in relation to atherosclerotic vascular disease mortality in older women
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Tea and non-tea flavonol intakes in relation to atherosclerotic vascular disease mortality in older women
      Available formats
      ×

Copyright

Corresponding author

*Corresponding author: K. L. Ivey, fax +61 8 9346 1317, email kerry.ivey@gmail.com

References

Hide All
1Corradini, E, Foglia, P, Giansanti, P, et al. (2011) Flavonoids: chemical properties and analytical methodologies of identification and quantitation in foods and plants. Nat Prod Res 25, 469495.
2US Department of Agriculture (2004) USDA Database for the Proanthocyanidin Content of Selected Foods. Bethesda, MD: US Department of Agriculture.
3US Department of Agriculture (2007) USDA Database for the Flavonoid Content of Selected Foods; Release 2.1. Bethesda, MD: US Department of Agriculture.
4US Department of Agriculture (2008) USDA Database for the Isoflavone Content of Selected Foods; Release 2.0. Bethesda, MD: US Department of Agriculture.
5Kawaguchi, K, Matsumoto, T & Kumazawa, Y (2011) Effects of antioxidant polyphenols on TNF-alpha-related diseases. Curr Top Med Chem 11, 17671779.
6Huxley, RR & Neil, HA (2003) The relation between dietary flavonol intake and coronary heart disease mortality: a meta-analysis of prospective cohort studies. Eur J Clin Nutr 57, 904908.
7Mink, PJ, Scrafford, CG, Barraj, LM, et al. (2007) Flavonoid intake and cardiovascular disease mortality: a prospective study in postmenopausal women. Am J Clin Nutr 85, 895909.
8Mursu, J, Voutilainen, S, Nurmi, T, et al. (2008) Flavonoid intake and the risk of ischaemic stroke and CVD mortality in middle-aged Finnish men: the Kuopio Ischaemic Heart Disease Risk Factor Study. B J Nutr 100, 890895.
9Chun, OK, Chung, SJ & Song, WO (2007) Estimated dietary flavonoid intake and major food sources of U.S. adults. J Nutr 137, 12441252.
10Arab, L, Liu, W & Elashoff, D (2009) Green and black tea consumption and risk of stroke. Stroke 40, 17861792.
11Wang, Z-M, Zhou, B, Wang, Y-S, et al. (2011) Black and green tea consumption and the risk of coronary artery disease: a meta-analysis. Am J Clin Nutr 93, 506515.
12Prince, RL, Devine, A, Dhaliwal, SS, et al. (2006) Effects of calcium supplementation on clinical fracture and bone structure: results of a 5-year, double-blind, placebo-controlled trial in elderly women. Arch Intern Med 166, 869875.
13World Health Organization (1977) Manual of the International Statistical Classification of Diseases, Injuries, and Causes of Death: Based on the Recommendations of the Ninth Revision Conference, 1975, and Adopted by the Twenty-ninth World Health Assembly, 1975 revision ed. Geneva: World Health Organization.
14National Centre for Classification in Health (Australia) (1998) The International Statistical Classification of Diseases and Related Health Problems, 10th Revision, Australian Modification (ICD-10-AM), 1st ed. Sydney: National Centre for Classification in Health.
15Britt, H (1997) A new coding tool for computerised clinical systems in primary care-ICPC plus. Aust Fam Physician 26, Suppl. 2, S79S82.
16Ivey, KL, Lewis, JR, Hodgson, JM, et al. (2011) Association between yogurt, milk, and cheese consumption and common carotid artery intima-media thickness and cardiovascular disease risk factors in elderly women. Am J Clin Nutr 94, 234239.
17D'Agostino, RB, Vasan, RS, Pencina, MJ, et al. (2008) General cardiovascular risk profile for use in primary care. Circulation 117, 743753.
18McArdle, WD, Katch, FI & Katch, VL (1991) Energy, Nutrition and Human Performance. Philadelphia: Lea & Febiger.
19Pollock, ML, Wilmore, JH & Fox, SM (1978) Health and Fitness Through Physical Activity. New York, NY: Wiley.
20Allison, H, Amanda, JP, Wendy, JB, et al. (2000) The Anti Cancer Council of Victoria FFQ: relative validity of nutrient intakes compared with weighed food records in young to middle-aged women in a study of iron supplementation. Aust N Z J Public Health 24, 576583.
21Ireland, P, Jolley, D, Giles, G, et al. (1994) Development of the Melbourne FFQ: a food frequency questionnaire for use in an Australian prospective study involving an ethnically diverse cohort. Asia Pac J Clin Nutr 3, 1931.
22Keli, SO, Hertog, MGL, Feskens, EJM, et al. (1996) Dietary flavonoids, antioxidant vitamins, and incidence of stroke: the Zutphen Study. Arch Intern Med 156, 637642.
23Perez-Vizcaino, F, Duarte, J & Andriantsitohaina, R (2006) Endothelial function and cardiovascular disease: effects of quercetin and wine polyphenols. Free Radic Res 40, 10541065.
24Egert, S, Bosy-Westphal, A, Seiberl, J, et al. (2009) Quercetin reduces systolic blood pressure and plasma oxidised low-density lipoprotein concentrations in overweight subjects with a high-cardiovascular disease risk phenotype: a double-blinded, placebo-controlled cross-over study. Br J Nutr 102, 10651074.
25Edwards, RL, Lyon, T, Litwin, SE, et al. (2007) Quercetin reduces blood pressure in hypertensive subjects. J Nutr 137, 24052411.
26Lewis, JR, Prince, RL, Zhu, K, et al. (2010) Habitual chocolate intake and vascular disease: a prospective study of clinical outcomes in older women. Arch Intern Med 170, 18571858.
27Buitrago-Lopez, A, Sanderson, J, Johnson, L, et al. (2011) Chocolate consumption and cardiometabolic disorders: systematic review and meta-analysis. BMJ 343, d4488.
28Steinberg, FM, Bearden, MM & Keen, CL (2003) Cocoa and chocolate flavonoids: implications for cardiovascular health. J Am Diet Assoc 103, 215223.
29Ras, RT, Zock, PL & Draijer, R (2011) Tea consumption enhances endothelial-dependent vasodilation; a meta-analysis. PLoS One 6, e16974.
30Hooper, L, Kroon, PA, Rimm, EB, et al. (2008) Flavonoids, flavonoid-rich foods, and cardiovascular risk: a meta-analysis of randomized controlled trials. Am J Clin Nutr 88, 3850.
31Bondonno, CP, Yang, X, Croft, KD, et al. (2012) Flavonoid-rich apples and nitrate-rich spinach augment nitric oxide status and improve endothelial function in healthy men and women: a randomized controlled trial. Free Radic Biol Med 52, 95102.
32Loke, WM, Hodgson, JM, Proudfoot, JM, et al. (2008) Pure dietary flavonoids quercetin and ( − )-epicatechin augment nitric oxide products and reduce endothelin-1 acutely in healthy men. Am J Clin Nutr 88, 10181025.
33Schroeter, H, Heiss, C, Balzer, J, et al. (2006) ( − )-Epicatechin mediates beneficial effects of flavanol-rich cocoa on vascular function in humans. Proc Natl Acad Sci U S A 103, 10241029.
34Brown, AL, Lane, J, Coverly, J, et al. (2009) Effects of dietary supplementation with the green tea polyphenol epigallocatechin-3-gallate on insulin resistance and associated metabolic risk factors: randomized controlled trial. Br J Nutr 101, 886894.
35Loke, W, Hodgson, J & Croft, K (2009) The biochemistry behind the potential cardiovascular protection by dietary flavonoids. In Plant Phenolics and Human Health: Biochemistry, Nutrition and Pharmacology [Fraga, CG, editor]. New Jersey: John Wiley & Sons.
36Loke, WM, Proudfoot, JM, Stewart, S, et al. (2008) Metabolic transformation has a profound effect on anti-inflammatory activity of flavonoids such as quercetin: lack of association between antioxidant and lipoxygenase inhibitory activity. Biochem Pharmacol 75, 10451053.

Keywords

Tea and non-tea flavonol intakes in relation to atherosclerotic vascular disease mortality in older women

  • Kerry L. Ivey (a1) (a2), Joshua R. Lewis (a1) (a2), Richard L. Prince (a1) (a2) and Jonathan M. Hodgson (a3)

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed