Skip to main content Accessibility help
×
Home

Susceptibility of phaseolin (Phaseolus vulgaris) subunits to trypsinolysis and influence of dietary level of raw phaseolin on protein digestion in the small intestine of rats

  • Carlos A. Montoya (a1) (a2), Jean-Paul Lallès (a1), Stephen Beebe (a3), Wolfgang B. Souffrant (a4), Daniel Mollé (a5) and Pascal Leterme (a2)...

Abstract

The aim of the present work was (a) to investigate trypsinolysis of denatured purified T phaseolin (Phaseolus vulgaris) subunits by MS and (b) to test the effect of raw T phaseolin inclusion level in diets fed chronically to rats on digestion in the small intestine. The diets contained casein as the sole protein source, or casein substituted with 33, 67 and 100 % of purified T phaseolin. Rats were fed for 10 d and then euthanised. Digesta and tissues from the first and second halves of the small intestine were prepared for electrophoresis, immunoblotting and densitometry. α-Phaseolin subunit for the T phaseolin was more resistant to trypsinolysis than β-phaseolin subunit. Nearly intact phaseolin subunits (molecular weight, MW 44–54 kDa) and partially digested phaseolin fragments (MW 17–19 and 20–24 kDa) were identified in small intestinal digesta. The concentration of intact phaseolin and of most undigested phaseolin fragments in digesta increased in the second half of the small intestine with increasing phaseolin intake (P < 0·05–0·01). The concentration of phaseolin fragments of a MW of 21–22·5 and 23–24·5 kDa in the mucosa increased linearly (P = 0·016–0·084) when the level of the T phaseolin was increased in the diet. In conclusion, the present work provides evidence that denatured T phaseolin subunits display different trypsinolysis patterns in vitro. Moreover, a high intake of raw T phaseolin impacts digestion in the small intestine of rats.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Susceptibility of phaseolin (Phaseolus vulgaris) subunits to trypsinolysis and influence of dietary level of raw phaseolin on protein digestion in the small intestine of rats
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Susceptibility of phaseolin (Phaseolus vulgaris) subunits to trypsinolysis and influence of dietary level of raw phaseolin on protein digestion in the small intestine of rats
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Susceptibility of phaseolin (Phaseolus vulgaris) subunits to trypsinolysis and influence of dietary level of raw phaseolin on protein digestion in the small intestine of rats
      Available formats
      ×

Copyright

Corresponding author

*Corresponding author: Pascal Leterme, fax +1 306 955 2510, email pascal.leterme@usask.ca

References

Hide All
1 Leterme, P & Muñoz, LC (2002) Factors influencing pulse consumption in Latin America. Br J Nutr Suppl. 3, 88, S251S254.
2 Ma, Y & Bliss, F (1978) Seed proteins of common bean. Crop Sci 18, 431437.
3 Marquez, U & Lajolo, F (1981) Composition and digestibility of albumin, globulins, and glutelins from Phaseolus vulgaris. J Agric Food Chem 29, 10681074.
4 Liener, I & Thompson, R (1980) In vitro and in vivo studies of the digestibility of the major storage protein of the navy bean Phaseolus vulgaris. Plant Foods Hum Nutr 30, 1325.
5 Jivotovskaya, A, Senyuk, V, Rotari, V, Horstmann, C & Vaintraub, I (1996) Proteolysis of phaseolin in relation to its structure. J Agric Food Chem 44, 37683772.
6 Nielsen, SS, Deshpande, SS, Hermodson, MA & Scott, MP (1988) Comparative digestibility of legume storage proteins. J Agric Food Chem 36, 896902.
7 Deshpande, SS & Nielsen, S (1987) In vitro enzymatic hydrolysis of phaseolin, the major storage protein of Phaseolus vulgaris L. J Food Sci 52, 13261329.
8 Ma, Y, Bliss, FA & Hall, TC (1980) Peptide mapping reveals considerable sequence homology among the three polypeptide subunits of G1 storage protein from French bean seed. Plant Physiol 66, 897902.
9 Slightom, JL, Drong, RF, Klassy, RC & Hoffman, LM (1985) Nucleotide sequence from phaseolin cDNA clones: the major storage proteins from Phaseolus vulgaris are encoded by two unique gene families. Nucleic Acids Res 13, 64836498.
10 Lawrence, MC, Izard, T, Beuchat, M, Blagrove, RJ & Colman, PM (1994) Structure of phaseolin at 2.2 Å resolution. Implications for a common vicilin/legumin structure and the genetic engineering of seed storage proteins. J Mol Biol 238, 748776.
11 Paaren, H, Slightom, J, Hall, TC, Inglis, A & Blagrove, R (1987) Purification of a seed glycoprotein: n-terminal and deglycosylation analysis of phaseolin. Phytochemistry 26, 335343.
12 Alli, I, Gibbs, BF, Okoniewska, MK, Konishi, Y & Dumas, F (1993) Identification and characterization of phaseolin polypeptides in a crystalline protein isolated from white kidney beans (Phaseolus vulgaris). J Agric Food Chem 41, 18301834.
13 Fukuda, T, Maruyama, N, Kanazawa, A, Abe, A, Shimamoto, Y, Hiemori, M, Tsuji, H, Tanisaka, T & Utsumi, S (2005) Molecular analysis and physi-cochemical properties of electrophoretic variants of wild soybean glycine soja storage proteins. J Agric Food Chem 53, 36583665.
14 Maruyama, N, Fukuda, T, Saka, S, Inui, N, Kotoh, J, Miyagawa, M, Hayashi, M, Sawada, M, Moriyama, T & Utsumi, S (2003) Molecular and structural analysis of electrophoretic variants of soybean seed storage proteins. Phytochemistry 64, 701708.
15 Santoro, LG, Grant, G & Pusztai, A (1997) Effects of short-term feeding of rats with a highly purified phaseolin preparation. Plant Foods Hum Nutr 51, 6170.
16 Santoro, LG, Grant, G & Pusztai, A (1999) In vivo degradation and stimulating effect of phaseolin on nitrogen secretion in rats. Plant Foods Hum Nutr 53, 223236.
17 Montoya, CA, Lallès, JP, Beebe, S, Montagne, L, Souffrant, WB & Leterme, P (2006) Influence of the Phaseolus vulgaris phaseolin level of incorporation, type and thermal treatment on gut characteristics in rats. Br J Nutr 95, 116123.
18 Montoya, CA, Leterme, P, Beebe, S, Souffrant, WB, Mollé, D & Lallès, JP (2008) Phaseolin type and heat treatment influence the biochemistry of protein digestion in the rat intestine. Br J Nutr 99, 531539.
19 Hall, TC, McLeester, RC & Bliss, FA (1977) Equal expression of the maternal and paternal alleles for polypeptide subunits of the major storage protein of the bean Phaseolus vulgaris L. Plant Physiol 59, 11221124.
20 Shevchenko, A, Wilm, M, Vorm, O & Mann, M (1996) Mass spectrometry sequencing of proteins from silver-stained polyacrylamide gels. Anal Chem 68, 850858.
21 Mrad de Osorio, A & Cardozo de Martinez, C (1999) Principios básicos para el manejo de animales de laboratorio [Basic Principles for the Handling of Laboratory Animals]. Bogota: Universidad Nacional de Colombia.
22 Lowry, OH, Rosebrough, NJ, Farr, AL & Randall, RJ (1951) Protein measurement with the folin phenol reagent. J Biol Chem 193, 265275.
23 Duncan, DB (1955) Multiple range and multiple F-tests. Biometrics 11, 142.
24 Kami, J & Gepts, P (1994) Phaseolin nucleotide sequence diversity in Phaseolus vulgaris. Genome 37, 751757.
25 Fu, CJ, Jez, JM, Kerley, MS, Allee, GL & Krishnan, HB (2007) Identification, characterization, epitope mapping, and three-dimensional modeling of the α-subunit of β-conglycinin of soybean, a potential allergen for young pigs. J Agric Food Chem 55, 40144020.
26 Maruyama, N, Sato, R, Wada, Y, Matsumura, Y, Goto, H, Okuda, E, Nakagawa, S & Utsumi, S (1999) Structure-physicochemical function relationships of soybean β-conglycinin constituent subunits. J Agric Food Chem 47, 52785284.
27 Maruyama, N, Salleh, MR, Takahashi, K, Yagasaki, K, Goto, H, Hontani, N, Nakagawa, S & Utsumi, S (2002) Structure-physicochemical function relationships of soybean β-conglycinin heterotrimers. J Agric Food Chem 50, 43234326.
28 Yeboah, FK, Alli, I, Simpson, BK, Konishi, Y & Gibbs, BF (1999) Tryptic fragments of phaseolin from protein isolates of Phaseolus beans. Food Chem 67, 105112.
29 Montoya, CA, Lallès, JP, Beebe, S, Souffrant, WB & Leterme, P (2005) Effect of the types of Phaseolus vulgaris phaseolin and thermal treatment on in vitro sequential hydrolysis by pepsin and pancreatin. In Proceedings of the Fourth International Food Legumes Research Conference, Society of Genetics and Plant Breeding, New Delhi, India, pp. 6162 [Kharkwal, MC, editor]. New Delhi: Kamala Print-n-publish.
30 Rezaei, H, Marc, D, Choiset, Y, Takahashi, M, Hoa, GHB, Haertle, T, Grosclaude, J & Debey, P (2000) High yield purification and physico-chemical properties of full-length recombinant allelic variants of sheep prion protein linked to scrapie susceptibility. Eur J Biochem 267, 28332839.
31 Fisher, M, Voragen, AGJ, Piersma, SR, Kofod, LV, Joergensen, CI, Guggenbuhl, P, Nunes, CS & Gruppen, H (2007) Presence of indigestible peptide aggregates of soybean meal in pig ileal digesta residue. J Sci Food Agric 87, 22292238.
32 Deshpande, SS & Damodaran, S (1989) Structure-digestibility relationship of legume 7S proteins. J Food Sci 54, 108113.
33 Montoya, CA, Leterme, P & Lallès, JP (2006) A protein-free diet alters small intestine architecture and digestive enzymes activities in rats. Reprod Nutr Dev 46, 4956.
34 Montoya, CA, Leterme, P, Victoria, NF, Toro, O, Souffrant, WB, Beebe, S & Lallès, JP (2008) Susceptibility of phaseolin to in vitro proteolysis is highly variable across common bean varieties (Phaseolus vulgaris). J Agric Food Chem 56, 21832191.

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed