Skip to main content Accessibility help
×
Home

Supplementary dietary calcium stimulates faecal fat and bile acid excretion, but does not protect against obesity and insulin resistance in C57BL/6J mice

  • Nicole J. W. de Wit (a1) (a2), Hanneke Bosch-Vermeulen (a1) (a2), Els Oosterink (a1) (a2), Michael Müller (a1) (a2) and Roelof van der Meer (a1) (a2)...

Abstract

There is increased interest in the potential protective role of dietary Ca in the development of metabolic disorders related to the metabolic syndrome. Ca-induced intestinal precipitation of fatty acids and bile acids as well as systemic metabolic effects of Ca on adipose tissue is proposed to play a causal role. In this experiment, we have studied all these aspects to validate the suggested protective effect of Ca supplementation, independent of other dietary changes, on the development of diet-induced obesity and insulin resistance. In our diet intervention study, C57BL/6J mice were fed high-fat diets differing in Ca concentrations (50 v. 150 mmol/kg). Faecal excretion analyses showed an elevated precipitation of intestinal fatty acids (2·3-fold; P < 0·01) and bile acids (2-fold; P < 0·01) on the high-Ca diet. However, this only led to a slight reduction in fat absorption (from 98 to 95 %; P < 0·01), mainly in the distal small intestine as indicated by gene expression changes. We found no effect on body-weight gain. Lipolysis and lipogenesis-related parameters in adipose tissue also showed no significant changes on the high-Ca diet, indicating no systemic effects of dietary Ca on adiposity. Furthermore, early gene expression changes of intestinal signalling molecules predicted no protective effect of dietary Ca on the development of insulin resistance, which was confirmed by equal values for insulin sensitivity on both diets. Taken together, our data do not support the proposed protective effect of dietary Ca on the development of obesity and/or insulin resistance, despite a significant increase in faecal excretion of fatty acids and bile acids.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Supplementary dietary calcium stimulates faecal fat and bile acid excretion, but does not protect against obesity and insulin resistance in C57BL/6J mice
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Supplementary dietary calcium stimulates faecal fat and bile acid excretion, but does not protect against obesity and insulin resistance in C57BL/6J mice
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Supplementary dietary calcium stimulates faecal fat and bile acid excretion, but does not protect against obesity and insulin resistance in C57BL/6J mice
      Available formats
      ×

Copyright

Corresponding author

*Corresponding author: Professor M. Müller, fax +31 317 483342, email michael.muller@wur.nl

References

Hide All
1 van Meijl, LEC, Vrolix, R & Mensink, RP (2008) Dairy product consumption and the metabolic syndrome. Nutr Res Rev 21, 148157.
2 Major, GC, Chaput, JP, Ledoux, M, et al. (2008) Recent developments in calcium-related obesity research. Obes Rev 9, 428445.
3 Govers, MJAP, Termont, DSML & Van der Meer, R (1994) Mechanism of the antiproliferative effect of milk mineral and other calcium supplements on colonic epithelium. Cancer Res 54, 95100.
4 Bendsen, NT, Hother, AL, Jensen, SK, et al. (2008) Effect of dairy calcium on fecal fat excretion: a randomized crossover trial. Int J Obes 32, 18161824.
5 Pilvi, TK, Korpela, R, Huttunen, M, et al. (2007) High-calcium diet with whey protein attenuates body-weight gain in high-fat-fed C57Bl/6J mice. Br J Nutr 98, 900907.
6 Papakonstantinou, E, Flatt, WP, Huth, PJ, et al. (2003) High dietary calcium reduces body fat content, digestibility of fat, and serum vitamin D in rats. Obes Res 11, 387394.
7 Boon, N, Hul, GBJ, Stegen, JHCH, et al. (2007) An intervention study of the effects of calcium intake on faecal fat excretion, energy metabolism and adipose tissue mRNA expression of lipid-metabolism related proteins. Int J Obes 31, 17041712.
8 Christensen, R, Lorenzen, JK, Svith, CR, et al. (2009) Effect of calcium from dairy and dietary supplements on faecal fat excretion: a meta-analysis of randomized controlled trials. Obes Rev 10, 475486.
9 Van der Meer, R, Welberg, JW, Kuipers, F, et al. (1990) Effects of supplemental dietary calcium on the intestinal association of calcium, phosphate, and bile acids. Gastroenterology 99, 16531659.
10 Kobayashi, M, Ikegami, H, Fujisawa, T, et al. (2007) Prevention and treatment of obesity, insulin resistance, and diabetes by bile acid-binding resin. Diabetes 56, 239247.
11 Petersen, KF, Dufour, S, Befroy, D, et al. (2005) Reversal of nonalcoholic hepatic steatosis, hepatic insulin resistance, and hyperglycemia by moderate weight reduction in patients with type 2 diabetes. Diabetes 54, 603608.
12 Tiikkainen, M, Bergholm, R, Vehkavaara, S, et al. (2003) Effects of identical weight loss on body composition and features of insulin resistance in obese women with high and low liver fat content. Diabetes 52, 701707.
13 Watanabe, M, Houten, SM, Mataki, C, et al. (2006) Bile acids induce energy expenditure by promoting intracellular thyroid hormone activation. Nature 439, 484489.
14 Zemel, MB (2005) The role of dairy foods in weight management. J Am Coll Nutr 24, 537S546S.
15 Boon, N, Hul, GBJ, Viguerie, N, et al. (2005) Effects of 3 diets with various calcium contents on 24-h energy expenditure, fat oxidation, and adipose tissue message RNA expression of lipid metabolism-related proteins. Am J Clin Nutr 82, 12441252.
16 Sampath, V, Havel, PJ & King, JC (2008) Calcium supplementation does not alter lipid oxidation or lipolysis in overweight/obese women. Obesity (Silver Spring) 16, 24002404.
17 Zhang, Q & Tordoff, MG (2004) No effect of dietary calcium on body weight of lean and obese mice and rats. Am J Physiol Regul Integr Comp Physiol 286, R669R677.
18 Schrager, S (2005) Dietary calcium intake and obesity. J Am Board Fam Pract 18, 205210.
19 Newmark, HL (1987) Nutrient density: an important and useful tool for laboratory animal studies. Carcinogenesis 8, 871873.
20 de Wit, NJ, Bosch-Vermeulen, H, de Groot, PJ, et al. (2008) The role of the small intestine in the development of dietary fat-induced obesity and insulin resistance in C57BL/6J mice. BMC Med Genomics 1, 14.
21 Makishima, M, Okamoto, AY, Repa, JJ, et al. (1999) Identification of a nuclear receptor for bile acids. Science 284, 13621365.
22 Jung, D, Inagaki, T, Gerard, RD, et al. (2007) FXR agonists and FGF15 reduce fecal bile acid excretion in a mouse model of bile acid malabsorption. J Lipid Res 48, 26932700.
23 Moutafis, CD, Simons, LA, Myant, NB, et al. (1977) The effect of cholestyramine on the faecal excretion of bile acids and neutral steroids in familial hypercholesterolaemia. Atherosclerosis 26, 329334.
24 Govers, MJAP, Termont, DSML, Lapre, JA, et al. (1996) Calcium in milk products precipitates intestinal fatty acids and secondary bile acids and thus inhibits colonic cytotoxicity in humans. Cancer Res 56, 32703275.
25 Asamoto, Y, Tazuma, S, Ochi, H, et al. (2001) Bile-salt hydrophobicity is a key factor regulating rat liver plasma-membrane communication: relation to bilayer structure, fluidity and transporter expression and function. Biochem J 359, 605610.
26 Dawson, PA, Haywood, J, Craddock, AL, et al. (2003) Targeted deletion of the ileal bile acid transporter eliminates enterohepatic cycling of bile acids in mice. J Biol Chem 278, 3392033927.
27 Zemel, MB (2003) Mechanisms of dairy modulation of adiposity. J Nutr 133, 252S256S.
28 Yanovski, JA, Parikh, SJ, Yanoff, LB, et al. (2009) Effects of calcium supplementation on body weight and adiposity in overweight and obese adults. Ann Intern Med 150, 821829.
29 Shi, H, Dirienzo, D & Zemel, MB (2001) Effects of dietary calcium on adipocyte lipid metabolism and body weight regulation in energy-restricted aP2-agouti transgenic mice. FASEB J 15, 291293.
30 Parra, P, Bruni, G, Palou, A, et al. (2008) Dietary calcium attenuation of body fat gain during high-fat feeding in mice. J Nutr Biochem 19, 109117.
31 Elliott, SS, Keim, NL, Stern, JS, et al. (2002) Fructose, weight gain, and the insulin resistance syndrome. Am J Clin Nutr 76, 911922.
32 Westerterp-Plantenga, MS, Nieuwenhuizen, A, Tome, D, et al. (2009) Dietary protein, weight loss, and weight maintenance. Ann Rev Nutr 29, 2141.
33 Shah, NP (2000) Effects of milk-derived bioactives: an overview. Br J Nutr 84, Suppl. 1, S3S10.
34 Pfeuffer, M & Schrezenmeir, J (2007) Milk and the metabolic syndrome. Obes Rev 8, 109118.
35 Hoppe, C, Molgaard, C, Vaag, A, et al. (2004) High intakes of milk, but not meat, increase s-insulin and insulin resistance in 8-year-old boys. Eur J Clin Nutr 59, 393398.
36 Brink, EJ, Beynen, AC, Dekker, PR, et al. (1992) Interaction of calcium and phosphate decreases ileal magnesium solubility and apparent magnesium absorption in rats. J Nutr 122, 580586.
37 He, K, Liu, K, Daviglus, ML, et al. (2006) Magnesium intake and incidence of metabolic syndrome among young adults. Circulation 113, 16751682.
38 Barbagallo, M & Dominguez, LJ (2007) Magnesium metabolism in type 2 diabetes mellitus, metabolic syndrome and insulin resistance. Arch Biochem Biophys 458, 4047.

Keywords

Related content

Powered by UNSILO
Type Description Title
WORD
Supplementary materials

De Wit supplementary material
De Wit supplementary material

 Word (54 KB)
54 KB
WORD
Supplementary materials

de Wit supplementary material
de Wit supplementary material

 Word (29 KB)
29 KB

Supplementary dietary calcium stimulates faecal fat and bile acid excretion, but does not protect against obesity and insulin resistance in C57BL/6J mice

  • Nicole J. W. de Wit (a1) (a2), Hanneke Bosch-Vermeulen (a1) (a2), Els Oosterink (a1) (a2), Michael Müller (a1) (a2) and Roelof van der Meer (a1) (a2)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.