Skip to main content Accessibility help
×
Home

Supplemental psyllium fibre regulates the intestinal barrier and inflammation in normal and colitic mice

  • Miyuki Ogata (a1), Tasuku Ogita (a2), Hiroyuki Tari (a3), Teruaki Arakawa (a3) and Takuya Suzuki (a1)...

Abstract

Our previous study demonstrated that supplemental psyllium fibre increased cytoprotective heat-shock protein (Hsp) 25 levels in the intestinal cells of mice. Here, we examined the effect of psyllium fibre on colonic gene and protein expression and faecal microbiota in normal and colitic mice to improve the understanding of the preventive role of the supplement. DNA microarray analysis revealed that a 10 % psyllium fibre diet administered for 5 d up-regulated eleven extracellular matrix (ECM)-associated genes, including collagens and fibronectins, in normal mice. Acute colitis was induced using dextran sodium sulphate (DSS) in mice that were administered a pre-feeding 5 to 10 % psyllium fibre diet for 5 d. Psyllium fibre partially ameliorated or resolved the DSS-induced colon damage and inflammation characterised by body weight loss, colon shortening, increased levels of pro-inflammatory cytokines and decreased tight junction protein expression in the colon. Analysis of faecal microbiota using denaturing gradient gel electrophoresis of the PCR-amplified 16S rRNA gene demonstrated that psyllium fibre affected the colonic microbiota. Intestinal permeability was evaluated by growing intestinal Caco-2 cell monolayers on membrane filter supports coated with or without fibronectin and collagen. Cells grown on collagen and fibronectin coating showed higher transepithelial electrical resistance, indicating a strengthening of barrier integrity. Therefore, increased Hsp25 levels and modification of colonic ECM contribute to the observed psyllium-mediated protection against DSS-induced colitis. Furthermore, ECM modification appears to play a role in the strengthening of the colon barrier. In conclusion, psyllium fibre may be useful in the prevention of intestinal inflammatory diseases.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Supplemental psyllium fibre regulates the intestinal barrier and inflammation in normal and colitic mice
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Supplemental psyllium fibre regulates the intestinal barrier and inflammation in normal and colitic mice
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Supplemental psyllium fibre regulates the intestinal barrier and inflammation in normal and colitic mice
      Available formats
      ×

Copyright

Corresponding author

* Corresponding author: Professor T. Suzuki, fax +81 82 424 7916, email takuya@hiroshima-u.ac.jp

References

Hide All
1. Ananthakrishnan, AN (2015) Epidemiology and risk factors for IBD. Nat Rev Gastroenterol Hepatol 12, 205217.
2. Molodecky, NA, Soon, IS, Rabi, DM, et al. (2012) Increasing incidence and prevalence of the inflammatory bowel diseases with time, based on systematic review. Gastroenterology 142, 4654 e42; quiz e30.
3. Chapman-Kiddell, CA, Davies, PS, Gillen, L, et al. (2010) Role of diet in the development of inflammatory bowel disease. Inflamm Bowel Dis 16, 137151.
4. Suzuki, T, Yoshida, S & Hara, H (2008) Physiological concentrations of short-chain fatty acids immediately suppress colonic epithelial permeability. Br J Nutr 100, 297305.
5. Liu, T, Li, J, Liu, Y, et al. (2012) Short-chain fatty acids suppress lipopolysaccharide-induced production of nitric oxide and proinflammatory cytokines through inhibition of NF-kappaB pathway in RAW264.7 cells. Inflammation 35, 16761684.
6. Singh, B (2007) Psyllium as therapeutic and drug delivery agent. Int J Pharm 334, 114.
7. Hallert, C, Kaldma, M & Petersson, BG (1991) Ispaghula husk may relieve gastrointestinal symptoms in ulcerative colitis in remission. Scand J Gastroenterol 26, 747750.
8. Fernandez-Banares, F, Hinojosa, J, Sanchez-Lombrana, JL, et al. (1999) Randomized clinical trial of Plantago ovata seeds (dietary fiber) as compared with mesalamine in maintaining remission in ulcerative colitis. Spanish Group for the Study of Crohn’s Disease and Ulcerative Colitis (GETECCU). Am J Gastroenterol 94, 427433.
9. Ogata, M, Van Hung, T, Tari, H, et al. (2017) Dietary psyllium fiber increases intestinal heat shock protein 25 expression in mice. Nutr Res 39, 2533.
10. Marteau, P, Flourie, B, Cherbut, C, et al. (1994) Digestibility and bulking effect of ispaghula husks in healthy humans. Gut 35, 17471752.
11. Turner, JR (2009) Intestinal mucosal barrier function in health and disease. Nat Rev Immunol 9, 799809.
12. Suzuki, T (2013) Regulation of intestinal epithelial permeability by tight junctions. Cell Mol Life Sci 70, 631659.
13. Heller, F, Florian, P, Bojarski, C, et al. (2005) Interleukin-13 is the key effector Th2 cytokine in ulcerative colitis that affects epithelial tight junctions, apoptosis, and cell restitution. Gastroenterology 129, 550564.
14. Zeissig, S, Burgel, N, Gunzel, D, et al. (2007) Changes in expression and distribution of claudin 2, 5 and 8 lead to discontinuous tight junctions and barrier dysfunction in active Crohn’s disease. Gut 56, 6172.
15. Vetrano, S, Rescigno, M, Cera, MR, et al. (2008) Unique role of junctional adhesion molecule-a in maintaining mucosal homeostasis in inflammatory bowel disease. Gastroenterology 135, 173184.
16. Hung, TV & Suzuki, T (2016) Dietary fermentable fiber reduces intestinal barrier defects and inflammation in colitic mice. J Nutr 146, 19701979.
17. Oyama, M, Hung, TV, Yoda, K, et al. (2017) A novel whey tetrapeptide IPAV reduces interleukin-8 production induced by TNF-a in human intestinal Caco-2 cells. J Funct Foods 35, 376383.
18. Suzuki, T & Hara, H (2009) Quercetin enhances intestinal barrier function through the assembly of zonula occludens-2, occludin, and claudin-1 and the expression of claudin-4 in Caco-2 cells. J Nutr 139, 965974.
19. Noda, S, Tanabe, S & Suzuki, T (2013) Naringenin enhances intestinal barrier function through the expression and cytoskeletal association of tight junction proteins in Caco-2 cells. Mol Nutr Food Res 57, 20192028.
20. Azuma, T, Shigeshiro, M, Kodama, M, et al. (2013) Supplemental naringenin prevents intestinal barrier defects and inflammation in colitic mice. J Nutr 143, 827834.
21. Soti, C, Nagy, E, Giricz, Z, et al. (2005) Heat shock proteins as emerging therapeutic targets. Br J Pharmacol 146, 769780.
22. Otaka, M, Odashima, M & Watanabe, S (2006) Role of heat shock proteins (molecular chaperones) in intestinal mucosal protection. Biochem Biophys Res Commun 348, 15.
23. Bonnans, C, Chou, J & Werb, Z (2014) Remodelling the extracellular matrix in development and disease. Nat Rev Mol Cell Biol 15, 786801.
24. Koval, M, Ward, C, Findley, MK, et al. (2010) Extracellular matrix influences alveolar epithelial claudin expression and barrier function. Am J Respir Cell Mol Biol 42, 172180.
25. Reeves, PG (1997) Components of the AIN-93 diets as improvements in the AIN-76A diet. J Nutr 127, 838s841s.
26. Kaikiri, H, Miyamoto, J, Kawakami, T, et al. (2017) Supplemental feeding of a gut microbial metabolite of linoleic acid, 10-hydroxy-cis-12-octadecenoic acid, alleviates spontaneous atopic dermatitis and modulates intestinal microbiota in NC/nga mice. Int J Food Sci Nutr (epublication ahead of print version 24 April 2017).
27. Ward, J (1963) Hierarchical grouping to optimize an objective function. J Am Stat Assoc 58, 236244.
28. Soderholm, JD, Peterson, KH, Olaison, G, et al. (1999) Epithelial permeability to proteins in the noninflamed ileum of Crohn’s disease? Gastroenterology 117, 6572.
29. Hollander, D, Vadheim, CM, Brettholz, E, et al. (1986) Increased intestinal permeability in patients with Crohn’s disease and their relatives. A possible etiologic factor. Ann Intern Med 105, 883885.
30. Ren, H, Musch, MW, Kojima, K, et al. (2001) Short-chain fatty acids induce intestinal epithelial heat shock protein 25 expression in rats and IEC 18 cells. Gastroenterology 121, 631639.
31. Ropeleski, MJ, Tang, J, Walsh-Reitz, MM, et al. (2003) Interleukin-11-induced heat shock protein 25 confers intestinal epithelial-specific cytoprotection from oxidant stress. Gastroenterology 124, 13581368.
32. Miyamoto, NT Jr., Borra, RC, Abreu, M, et al. (2008) Immune-expression of HSP27 and IL-10 in recurrent aphthous ulceration. J Oral Pathol Med 37, 462467.
33. Hu, S, Ciancio, MJ, Lahav, M, et al. (2007) Translational inhibition of colonic epithelial heat shock proteins by IFN-gamma and TNF-alpha in intestinal inflammation. Gastroenterology 133, 18931904.
34. Starchenko, A, Graves-Deal, R, Yang, YP, et al. (2017) Clustering of integrin alpha5 at the lateral membrane restores epithelial polarity in invasive colorectal cancer cells. Mol Biol Cell 28, 12881300.
35. Sahasrabudhe, NM, Schols, HA, Faas, MM, et al. (2016) Arabinoxylan activates Dectin-1 and modulates particulate beta-glucan-induced Dectin-1 activation. Mol Nutr Food Res 60, 458467.
36. Rieder, F & Fiocchi, C (2008) Intestinal fibrosis in inflammatory bowel disease -- current knowledge and future perspectives. J Crohns Colitis 2, 279290.

Keywords

Type Description Title
WORD
Supplementary materials

Ogata et al supplementary material
Tables S1-S5 and Figure S1

 Word (85 KB)
85 KB

Supplemental psyllium fibre regulates the intestinal barrier and inflammation in normal and colitic mice

  • Miyuki Ogata (a1), Tasuku Ogita (a2), Hiroyuki Tari (a3), Teruaki Arakawa (a3) and Takuya Suzuki (a1)...

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed