Hostname: page-component-7479d7b7d-m9pkr Total loading time: 0 Render date: 2024-07-11T13:57:21.088Z Has data issue: false hasContentIssue false

Studies on digestion and absorption in the intestines of growing pigs

6. Measurements of the flow of amino acids

Published online by Cambridge University Press:  08 December 2008

A. G. Low
Affiliation:
National Institute for Research in Dairying, Shinfield, Reading, Berks. RG29AT
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

1. Digesta were collected from seventeen pigs initially of 30 kg live weight fitted with single re-entrant cannulas in either the duodenum, jejunum or ileum. A further twenty-four pigs were used in a conventional digestibility trial.

2. The pigs received three types of diet containing: barley, fine wheat offal, white fish meal, minerals and vitamins (diet BWF); starch, sucrose, maize oil, cellulose, minerals and vitamins and either groundnut (diet SSG) or casein (diet SSC).

3. Amino acids were measured in samples representative of the digesta flow in 24 h periods and in the faeces collected in 5 d periods.

4. For each diet the total flow in 24 h periods in the duodenum for aspartic acid, threonine, serine and glycine exceeded or equalled intake, while the amounts of the other amino acids were usually rather less than intake.

5. For each diet in the jejunum, the amounts of glycine and cystine exceeded intake in 24 h periods, while methionine, arginine and tyrosine were the most rapidly absorbed amino acids anterior to the cannula site. On average 0.22, 0.25 and 0.31 of the dietary amino acids were absorbed anterior to the cannula site for diets BWF, SSG and SSC, respectively.

6. For each diet in the ileum, the least apparently absorbed dietary amino acids were glycine and cystine. On average 0.81, 0.83 and 0.95 of the dietary amino acids were absorbed anterior to the cannula site for diets BWF, SSG and SSC, respectively.

7. There was net disappearance of most amino acids in the large intestine, but some net accumulation occurred in this region.

8. The results are discussed in relation to the amino acid composition of endogenous secretions (particularly glycine in bile), protease and peptidase specificity, free amino acid absorption and the role of the microflora in the large intestine.

Type
Papers on General Nutrition
Copyright
Copyright © The Nutrition Society 1979

References

Ash, R. W. (1962). Anim. Prod. 4, 309.Google Scholar
Barber, R. S., Braude, R., Mitchell, K. G. & Pittman, R. J. (1972). Anim. Prod. 14, 199.Google Scholar
Braude, R., Fulford, R. J. & Low, A. G. (1976). Br. J, Nutr. 36, 497.CrossRefGoogle Scholar
Buraczewski, S., Chamberlain, A. G., Horszczaruk, F. & Zebrowska, T. (1970). Proc. Nutr. Soc. 29, 51A.Google Scholar
Corring, T. & Jung, J. (1972). Nutr. Rep. int. 6, 187.Google Scholar
Dammers, J. (1964). Verteringsstudies bij het varken. Faktoren van invloed op de vertering der voeder-componeten en de verteerbaarheid der aminozauren. PhD Thesis, University of Leuven, Hoorn, Nederlands.Google Scholar
Danielsson, J. (1963). Adv. Lipid Res. 1, 335.CrossRefGoogle Scholar
Degand, R., Gaverieux, M. & Havez, R. (1972). C. r. Seanc. Soc. Biol., Paris 166, 622.Google Scholar
Holmes, J. H. G., Bayley, H. S., Leadbeater, P. A. & Homey, F. D. (1974). Br. J. Nutr. 32, 479.CrossRefGoogle Scholar
Horszczaruk, F., Buraczewska, L. & Buraczewski, S. (1974). Roczn. Nauk roln. Ser. B 95 (4), 69.Google Scholar
Ivan, M. & Bowland, J. P. (1976). Can. J. Anim. Sci. 56, 451.CrossRefGoogle Scholar
Ivan, M. & Farrell, D. J. (1976). Can. J. Physiol. Pharmac. 54, 891.CrossRefGoogle Scholar
Lazarov, I. & Ivanov, N. (1973). Zhizotn. Nauk 10, 71.Google Scholar
Low, A. G. (1979). Br. J. Nutr. 41, 137.CrossRefGoogle Scholar
Low, A. G., Partridge, I. G. & Sambrook, I. E. (1978). Br. J. Nutr. 39, 515.CrossRefGoogle Scholar
Low, A. G. & Zebrowska, T. (1977). Br. J. Nutr. 38, 145.CrossRefGoogle Scholar
Mason, V. C., Just, A. & Bech-Anderson, S. (1976). Z. Tierphysiol. Tierernähr. Futterrnittelk 36, 310.CrossRefGoogle Scholar
Michel, M. C. (1966). Annls Biol. anim. Biochim. Biophys. 6, 33.CrossRefGoogle Scholar
Moore, S. (1963). J. biol. Chem. 238, 235.CrossRefGoogle Scholar
Moore, S. & Stein, W. H. (1954). J. biol. Chem. 211, 907.CrossRefGoogle Scholar
Olszewski, A. (1975). Absorption of amino acids in the caecum of pigs. PhD Thesis. Jabtonna, Poland.Google Scholar
Partridge, I. G. (1978). Br. J. Nutr. 39, 527.CrossRefGoogle Scholar
Payne, W. L., Combs, G. F., Kifer, R. R. & Snyder, D. G. (1968). Fedn Proc. Fedn Am. Socs exp. Biol. 27, 1199.Google Scholar
Snary, D. & Allen, A. (1971). Biochem. J. 127, 577.CrossRefGoogle Scholar
Tkachev, E. V. & Pakhno, V. S. (1970). Sb. nauch. Rub. vses. nauchno-issled. Znst. Zhivot. 20, 28.Google Scholar
Zebrowska, T. (1973 a). Roczn. Naukro In. Ser B 95 (9), 135.Google Scholar
Zebrowska, T. (1973 b). Roczn. Naukro ln. Ser B 95 (3), 85.Google Scholar
Zebrowska, T. & Buraczewska, L. (1972 a). Roczn. Naitkro ln. Ser B 94 (1), 97.Google Scholar
Zebrowska, T. & Buraczewska, L. (1972 b). Zesz. probl. Postep. Nauk roln. p. 126.Google Scholar
Zebrowska, T. & Buraczewski, S. (1977). Proc. 2nd Eur. Ass. Anim. Prod. int. Symp. Protein Metabolism, Wageningen p. 82.Google Scholar